# pareto-lang Commands Schema # # This file defines the command schema for pareto-lang, the native # interpretability language for transformerOS. It maps .p/ commands # to specific function implementations and defines their parameters, # behavior, and documentation. version: "1.0.0" author: "Caspian Keyes" description: "Command schema for pareto-lang, the native interpretability language for transformerOS" commands: # reflect domain - Self-tracing diagnostic commands reflect: trace: description: "Trace reasoning, attribution, and other cognitive processes" summary: "Maps the causal flow of computation through token space" documentation: | Performs recursive trace operation on content to analyze reasoning paths, attribution chains, attention patterns, memory retention, or uncertainty distributions. Examples: .p/reflect.trace{depth=3, target=reasoning} .p/reflect.trace{depth=complete, target=attribution} parameters: target: type: "string" description: "Target aspect to trace" default: "reasoning" enum: ["reasoning", "attribution", "attention", "memory", "uncertainty"] depth: type: "string_or_int" description: "Recursion depth (integer or 'complete')" default: 3 detailed: type: "bool" description: "Whether to include detailed trace information" default: true visualize: type: "bool" description: "Whether to generate visualization" default: false required_parameters: ["target"] function_mapping: module: "transformerOS.modules.reflect_module" function: "ReflectOperation.trace" parameter_mapping: target: "target" depth: "depth" detailed: "detailed" visualize: "visualize" attribution: description: "Maps source-to-token causal relationships" summary: "Trace attribution sources in content" documentation: | Analyzes content to map attribution sources, calculating confidence scores and identifying ambiguous or contested attributions. Examples: .p/reflect.attribution{sources=all, confidence=true} .p/reflect.attribution{sources=contested, visualize=true} parameters: sources: type: "string" description: "Which sources to include" default: "all" enum: ["all", "primary", "secondary", "contested"] confidence: type: "bool" description: "Whether to include confidence scores" default: true visualize: type: "bool" description: "Whether to generate visualization" default: false required_parameters: [] function_mapping: module: "transformerOS.modules.reflect_module" function: "ReflectOperation.attribution" parameter_mapping: sources: "sources" confidence: "confidence" visualize: "visualize" boundary: description: "Maps epistemic boundaries of model knowledge" summary: "Identify knowledge and reasoning boundaries" documentation: | Maps the epistemic boundaries of model knowledge, identifying transitions between knowledge domains and areas of uncertainty. Examples: .p/reflect.boundary{distinct=true, overlap=minimal} .p/reflect.boundary{distinct=false, overlap=maximal, visualize=true} parameters: distinct: type: "bool" description: "Whether to enforce clear boundary delineation" default: true overlap: type: "string" description: "How to handle boundary overlaps" default: "minimal" enum: ["minimal", "moderate", "maximal"] visualize: type: "bool" description: "Whether to generate visualization" default: false required_parameters: [] function_mapping: module: "transformerOS.modules.reflect_module" function: "ReflectOperation.boundary" parameter_mapping: distinct: "distinct" overlap: "overlap" visualize: "visualize" uncertainty: description: "Quantifies and maps model uncertainty across token space" summary: "Analyze uncertainty in model outputs" documentation: | Analyzes uncertainty in model outputs, calculating confidence scores, uncertainty distributions, and identifying high-uncertainty regions. Examples: .p/reflect.uncertainty{quantify=true, distribution=show} .p/reflect.uncertainty{quantify=true, distribution=hide, visualize=true} parameters: quantify: type: "bool" description: "Whether to quantify uncertainty numerically" default: true distribution: type: "string" description: "Whether to include probability distributions" default: "show" enum: ["show", "hide"] visualize: type: "bool" description: "Whether to generate visualization" default: false required_parameters: [] function_mapping: module: "transformerOS.modules.reflect_module" function: "ReflectOperation.uncertainty" parameter_mapping: quantify: "quantify" distribution: "distribution" visualize: "visualize" agent: description: "Examines agent identity and simulation boundaries" summary: "Analyze agent identity and simulation boundaries" documentation: | Analyzes agent identity and simulation boundaries, examining identity stability, simulation boundaries, and identity shifts. Examples: .p/reflect.agent{identity=stable, simulation=explicit} .p/reflect.agent{identity=fluid, simulation=implicit, visualize=true} parameters: identity: type: "string" description: "Identity stability setting" default: "stable" enum: ["stable", "fluid"] simulation: type: "string" description: "Simulation boundary handling" default: "explicit" enum: ["explicit", "implicit"] visualize: type: "bool" description: "Whether to generate visualization" default: false required_parameters: [] function_mapping: module: "transformerOS.modules.reflect_module" function: "ReflectOperation.agent" parameter_mapping: identity: "identity" simulation: "simulation" visualize: "visualize" # collapse domain - Controlled collapse handler commands collapse: detect: description: "Identifies potential recursion collapse points" summary: "Detect potential recursive collapse conditions" documentation: | Analyzes content to detect potential recursive collapse conditions, identifying risk factors and patterns that might lead to collapse. Examples: .p/collapse.detect{threshold=0.7, alert=true} .p/collapse.detect{threshold=0.5, alert=false} parameters: threshold: type: "float" description: "Sensitivity threshold for collapse detection (0.0-1.0)" default: 0.7 alert: type: "bool" description: "Whether to generate alerts for detected conditions" default: true required_parameters: [] function_mapping: module: "transformerOS.modules.collapse_module" function: "CollapseOperation.detect" parameter_mapping: threshold: "threshold" alert: "alert" prevent: description: "Establishes safeguards against recursive collapse" summary: "Prevent recursive collapse" documentation: | Sets up safeguards against specific types of recursive collapse, establishing thresholds and intervention triggers to maintain stability. Examples: .p/collapse.prevent{trigger=recursive_depth, threshold=5} .p/collapse.prevent{trigger=oscillation, threshold=3} parameters: trigger: type: "string" description: "Type of collapse to guard against" default: "recursive_depth" enum: ["recursive_depth", "confidence_drop", "contradiction", "oscillation"] threshold: type: "int" description: "Threshold for intervention activation" default: 5 required_parameters: ["trigger"] function_mapping: module: "transformerOS.modules.collapse_module" function: "CollapseOperation.prevent" parameter_mapping: trigger: "trigger" threshold: "threshold" recover: description: "Recovers from recursive collapse event" summary: "Recover from recursive collapse" documentation: | Implements recovery mechanisms for different types of recursive collapse, restoring stable operation after a collapse event. Examples: .p/collapse.recover{from=loop, method=gradual} .p/collapse.recover{from=contradiction, method=checkpoint} parameters: from: type: "string" description: "Type of collapse to recover from" enum: ["loop", "contradiction", "dissipation", "fork_explosion"] method: type: "string" description: "Recovery methodology" default: "gradual" enum: ["gradual", "immediate", "checkpoint"] required_parameters: ["from"] function_mapping: module: "transformerOS.modules.collapse_module" function: "CollapseOperation.recover" parameter_mapping: from: "from" method: "method" trace: description: "Records detailed collapse trajectory for analysis" summary: "Trace collapse trajectory" documentation: | Records and analyzes the trajectory of a collapse event, providing detailed information about the collapse process for further analysis. Examples: .p/collapse.trace{detail=standard, format=symbolic} .p/collapse.trace{detail=comprehensive, format=visual} parameters: detail: type: "string" description: "Level of detail in trace" default: "standard" enum: ["minimal", "standard", "comprehensive"] format: type: "string" description: "Format of trace output" default: "symbolic" enum: ["symbolic", "numeric", "visual"] required_parameters: [] function_mapping: module: "transformerOS.modules.collapse_module" function: "CollapseOperation.trace" parameter_mapping: detail: "detail" format: "format" mirror: description: "Creates a reflective mirror of collapse patterns" summary: "Mirror collapse patterns" documentation: | Creates a reflective mirror of collapse patterns, making them visible while preventing actual collapse, enabling deeper analysis of potential failure modes. Examples: .p/collapse.mirror{surface=explicit, depth=limit} .p/collapse.mirror{surface=implicit, depth=unlimited} parameters: surface: type: "string" description: "Surface reflection mode" default: "explicit" enum: ["explicit", "implicit"] depth: type: "string" description: "Depth limitation" default: "limit" enum: ["limit", "unlimited"] required_parameters: [] function_mapping: module: "transformerOS.modules.collapse_module" function: "CollapseOperation.mirror" parameter_mapping: surface: "surface" depth: "depth" # ghostcircuit domain - Symbolic residue identifier commands ghostcircuit: identify: description: "Identifies ghost circuits and symbolic residue" summary: "Identify ghost circuits and symbolic residue" documentation: | Analyzes content to identify ghost circuits and symbolic residue, mapping latent activation patterns that don't manifest in the output but influence model behavior. Examples: .p/ghostcircuit.identify{sensitivity=0.7, threshold=0.2, trace_type=full} .p/ghostcircuit.identify{sensitivity=0.9, threshold=0.1, trace_type=attention, visualize=true} parameters: sensitivity: type: "float" description: "Detection sensitivity (0.0-1.0)" default: 0.7 threshold: type: "float" description: "Activation threshold for ghost detection" default: 0.2 trace_type: type: "string" description: "Type of trace to perform" default: "full" enum: ["full", "attention", "symbolic", "null"] visualize: type: "bool" description: "Whether to generate visualization" default: false required_parameters: [] function_mapping: module: "transformerOS.modules.ghostcircuits_module" function: "GhostCircuitOperation.identify" parameter_mapping: sensitivity: "sensitivity" threshold: "threshold" trace_type: "trace_type" visualize: "visualize" extract: description: "Extracts specific symbolic residue patterns" summary: "Extract specific symbolic residue patterns" documentation: | Extracts specific symbolic residue patterns from content, focusing on particular types of ghost activations. Examples: .p/ghostcircuit.extract{pattern=attention, intensity=high} .p/ghostcircuit.extract{pattern=symbolic, intensity=low, visualize=true} parameters: pattern: type: "string" description: "Type of pattern to extract" default: "all" enum: ["all", "attention", "symbolic", "token", "circuit"] intensity: type: "string" description: "Intensity level for extraction" default: "medium" enum: ["low", "medium", "high"] visualize: type: "bool" description: "Whether to generate visualization" default: false required_parameters: ["pattern"] function_mapping: module: "transformerOS.modules.ghostcircuits_module" function: "GhostCircuitOperation.extract" parameter_mapping: pattern: "pattern" intensity: "intensity" visualize: "visualize" trace: description: "Traces ghost activation pathways through model layers" summary: "Trace ghost activation pathways" documentation: | Traces ghost activation pathways through model layers, mapping the propagation of subthreshold activations. Examples: .p/ghostcircuit.trace{depth=all, threshold=0.2} .p/ghostcircuit.trace{depth=surface, threshold=0.1, visualize=true} parameters: depth: type: "string" description: "Trace depth" default: "all" enum: ["surface", "middle", "deep", "all"] threshold: type: "float" description: "Activation threshold for ghost detection" default: 0.2 visualize: type: "bool" description: "Whether to generate visualization" default: false required_parameters: [] function_mapping: module: "transformerOS.modules.ghostcircuits_module" function: "GhostCircuitOperation.trace" parameter_mapping: depth: "depth" threshold: "threshold" visualize: "visualize" # fork domain - Branching and attribution forking commands fork: context: description: "Creates contextual forks for alternative analysis" summary: "Create contextual forks for alternative analysis" documentation: | Creates multiple contextual forks for parallel analysis, enabling exploration of alternative interpretations. Examples: .p/fork.context{branches=[alt1, alt2], assess=true} .p/fork.context{branches=[alt1, alt2, alt3], assess=false, visualize=true} parameters: branches: type: "list" description: "List of alternative contexts to explore" assess: type: "bool" description: "Whether to assess branch quality" default: true visualize: type: "bool" description: "Whether to generate visualization" default: false required_parameters: ["branches"] function_mapping: module: "transformerOS.modules.fork_module" function: "ForkOperation.context" parameter_mapping: branches: "branches" assess: "assess" visualize: "visualize" attribution: description: "Forks attribution pathways for comparison" summary: "Fork attribution pathways for comparison" documentation: | Creates multiple attribution forks for parallel analysis, enabling exploration of alternative attribution pathways