File size: 7,939 Bytes
1978456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
{
  "Universal LLM Initialization": {
    "prefix": "ud-init",
    "body": [
      "from universal_developer import UniversalLLM",
      "",
      "llm = UniversalLLM(",
      "    provider=\"${1|anthropic,openai,qwen,gemini,ollama|}\",",
      "    api_key=\"${2:your_api_key}\"",
      ")"
    ],
    "description": "Initialize a Universal Developer LLM instance"
  },
  "Thinking Mode Generator": {
    "prefix": "ud-think",
    "body": [
      "response = llm.generate(",
      "    ${1:system_prompt=\"${2:You are a helpful assistant.}\",}",
      "    prompt=\"/think ${3:What are the implications of ${4:technology} on ${5:domain}?}\"",
      ")"
    ],
    "description": "Generate response using thinking mode"
  },
  "Fast Mode Generator": {
    "prefix": "ud-fast",
    "body": [
      "response = llm.generate(",
      "    ${1:system_prompt=\"${2:You are a helpful assistant.}\",}",
      "    prompt=\"/fast ${3:${4:Summarize} ${5:this information}}\"",
      ")"
    ],
    "description": "Generate concise response using fast mode"
  },
  "Loop Mode Generator": {
    "prefix": "ud-loop",
    "body": [
      "response = llm.generate(",
      "    ${1:system_prompt=\"${2:You are a helpful assistant.}\",}",
      "    prompt=\"/loop --iterations=${3:3} ${4:Improve this ${5:text}: ${6:content}}\"",
      ")"
    ],
    "description": "Generate iteratively refined response using loop mode"
  },
  "Reflection Mode Generator": {
    "prefix": "ud-reflect",
    "body": [
      "response = llm.generate(",
      "    ${1:system_prompt=\"${2:You are a helpful assistant.}\",}",
      "    prompt=\"/reflect ${3:${4:Analyze} the ${5:implications} of ${6:topic}}\"",
      ")"
    ],
    "description": "Generate self-reflective response using reflection mode"
  },
  "Fork Mode Generator": {
    "prefix": "ud-fork",
    "body": [
      "response = llm.generate(",
      "    ${1:system_prompt=\"${2:You are a helpful assistant.}\",}",
      "    prompt=\"/fork --count=${3:2} ${4:Generate different ${5:approaches} to ${6:problem}}\"",
      ")"
    ],
    "description": "Generate multiple alternative responses using fork mode"
  },
  "Chain Commands": {
    "prefix": "ud-chain",
    "body": [
      "response = llm.generate(",
      "    ${1:system_prompt=\"${2:You are a helpful assistant.}\",}",
      "    prompt=\"/${3|think,loop,reflect,fork|} /${4|think,loop,reflect,fork|} ${5:Prompt text}\"",
      ")"
    ],
    "description": "Generate response using chained symbolic commands"
  },
  "Custom Command Registration": {
    "prefix": "ud-custom",
    "body": [
      "def transform_custom_command(prompt, options):",
      "    \"\"\"Custom command transformation function\"\"\"",
      "    system_prompt = options.get('system_prompt', '') + \"\"\"",
      "${1:Custom system prompt instructions}",
      "\"\"\"",
      "    ",
      "    return {",
      "        \"system_prompt\": system_prompt,",
      "        \"user_prompt\": prompt,",
      "        \"model_parameters\": {",
      "            \"${2:temperature}\": ${3:0.7}",
      "        }",
      "    }",
      "",
      "llm.register_command(",
      "    \"${4:command_name}\",",
      "    description=\"${5:Command description}\",",
      "    parameters=[",
      "        {",
      "            \"name\": \"${6:param_name}\",",
      "            \"description\": \"${7:Parameter description}\",",
      "            \"required\": ${8:False},",
      "            \"default\": ${9:\"default_value\"}",
      "        }",
      "    ],",
      "    transform=transform_custom_command",
      ")"
    ],
    "description": "Register a custom symbolic command"
  },
  "Flask API Integration": {
    "prefix": "ud-flask",
    "body": [
      "from flask import Flask, request, jsonify",
      "from universal_developer import UniversalLLM",
      "import os",
      "",
      "app = Flask(__name__)",
      "",
      "llm = UniversalLLM(",
      "    provider=\"${1|anthropic,openai,qwen,gemini,ollama|}\",",
      "    api_key=os.environ.get(\"${2:${1/(anthropic|openai|qwen|gemini)/${1:/upcase}_API_KEY/}}\")",
      ")",
      "",
      "@app.route('/api/generate', methods=['POST'])",
      "def generate():",
      "    data = request.json",
      "    prompt = data.get('prompt')",
      "    system_prompt = data.get('system_prompt', '')",
      "    ",
      "    # Get command from query param or default to /think",
      "    command = request.args.get('command', 'think')",
      "    ",
      "    try:",
      "        response = llm.generate(",
      "            system_prompt=system_prompt,",
      "            prompt=f\"/{command} {prompt}\"",
      "        )",
      "        return jsonify({'response': response})",
      "    except Exception as e:",
      "        return jsonify({'error': str(e)}), 500",
      "",
      "if __name__ == '__main__':",
      "    app.run(debug=True)"
    ],
    "description": "Flask API integration with Universal Developer"
  },
  "FastAPI Integration": {
    "prefix": "ud-fastapi",
    "body": [
      "from fastapi import FastAPI, HTTPException, Query",
      "from pydantic import BaseModel",
      "from typing import Optional",
      "from universal_developer import UniversalLLM",
      "import os",
      "",
      "app = FastAPI()",
      "",
      "llm = UniversalLLM(",
      "    provider=\"${1|anthropic,openai,qwen,gemini,ollama|}\",",
      "    api_key=os.environ.get(\"${2:${1/(anthropic|openai|qwen|gemini)/${1:/upcase}_API_KEY/}}\")",
      ")",
      "",
      "class GenerateRequest(BaseModel):",
      "    prompt: str",
      "    system_prompt: Optional[str] = \"\"",
      "",
      "@app.post(\"/api/generate\")",
      "async def generate(",
      "    request: GenerateRequest,",
      "    command: str = Query(\"think\", description=\"Symbolic command to use\")",
      "):",
      "    try:",
      "        response = llm.generate(",
      "            system_prompt=request.system_prompt,",
      "            prompt=f\"/{command} {request.prompt}\"",
      "        )",
      "        return {\"response\": response}",
      "    except Exception as e:",
      "        raise HTTPException(status_code=500, detail=str(e))"
    ],
    "description": "FastAPI integration with Universal Developer"
  },
  "Streamlit Integration": {
    "prefix": "ud-streamlit",
    "body": [
      "import streamlit as st",
      "from universal_developer import UniversalLLM",
      "import os",
      "",
      "# Initialize LLM",
      "@st.cache_resource",
      "def get_llm():",
      "    return UniversalLLM(",
      "        provider=\"${1|anthropic,openai,qwen,gemini,ollama|}\",",
      "        api_key=os.environ.get(\"${2:${1/(anthropic|openai|qwen|gemini)/${1:/upcase}_API_KEY/}}\")",
      "    )",
      "",
      "llm = get_llm()",
      "",
      "st.title(\"Universal Developer Demo\")",
      "",
      "# Command selection",
      "command = st.selectbox(",
      "    \"Select symbolic command\",",
      "    [\"think\", \"fast\", \"loop\", \"reflect\", \"fork\", \"collapse\"]",
      ")",
      "",
      "# Command parameters",
      "if command == \"loop\":",
      "    iterations = st.slider(\"Iterations\", 1, 5, 3)",
      "    command_str = f\"/loop --iterations={iterations}\"",
      "elif command == \"fork\":",
      "    count = st.slider(\"Alternative count\", 2, 5, 2)",
      "    command_str = f\"/fork --count={count}\"",
      "else:",
      "    command_str = f\"/{command}\"",
      "",
      "# User input",
      "prompt = st.text_area(\"Enter your prompt\", \"\")",
      "",
      "if st.button(\"Generate\") and prompt:",
      "    with st.spinner(\"Generating response...\"):",
      "        response = llm.generate(",
      "            prompt=f\"{command_str} {prompt}\"",
      "        )",
      "        st.markdown(response)"
    ],
    "description": "Streamlit integration with Universal Developer"
  }
}