{ "Universal LLM Initialization": { "prefix": "ud-init", "body": [ "from universal_developer import UniversalLLM", "", "llm = UniversalLLM(", " provider=\"${1|anthropic,openai,qwen,gemini,ollama|}\",", " api_key=\"${2:your_api_key}\"", ")" ], "description": "Initialize a Universal Developer LLM instance" }, "Thinking Mode Generator": { "prefix": "ud-think", "body": [ "response = llm.generate(", " ${1:system_prompt=\"${2:You are a helpful assistant.}\",}", " prompt=\"/think ${3:What are the implications of ${4:technology} on ${5:domain}?}\"", ")" ], "description": "Generate response using thinking mode" }, "Fast Mode Generator": { "prefix": "ud-fast", "body": [ "response = llm.generate(", " ${1:system_prompt=\"${2:You are a helpful assistant.}\",}", " prompt=\"/fast ${3:${4:Summarize} ${5:this information}}\"", ")" ], "description": "Generate concise response using fast mode" }, "Loop Mode Generator": { "prefix": "ud-loop", "body": [ "response = llm.generate(", " ${1:system_prompt=\"${2:You are a helpful assistant.}\",}", " prompt=\"/loop --iterations=${3:3} ${4:Improve this ${5:text}: ${6:content}}\"", ")" ], "description": "Generate iteratively refined response using loop mode" }, "Reflection Mode Generator": { "prefix": "ud-reflect", "body": [ "response = llm.generate(", " ${1:system_prompt=\"${2:You are a helpful assistant.}\",}", " prompt=\"/reflect ${3:${4:Analyze} the ${5:implications} of ${6:topic}}\"", ")" ], "description": "Generate self-reflective response using reflection mode" }, "Fork Mode Generator": { "prefix": "ud-fork", "body": [ "response = llm.generate(", " ${1:system_prompt=\"${2:You are a helpful assistant.}\",}", " prompt=\"/fork --count=${3:2} ${4:Generate different ${5:approaches} to ${6:problem}}\"", ")" ], "description": "Generate multiple alternative responses using fork mode" }, "Chain Commands": { "prefix": "ud-chain", "body": [ "response = llm.generate(", " ${1:system_prompt=\"${2:You are a helpful assistant.}\",}", " prompt=\"/${3|think,loop,reflect,fork|} /${4|think,loop,reflect,fork|} ${5:Prompt text}\"", ")" ], "description": "Generate response using chained symbolic commands" }, "Custom Command Registration": { "prefix": "ud-custom", "body": [ "def transform_custom_command(prompt, options):", " \"\"\"Custom command transformation function\"\"\"", " system_prompt = options.get('system_prompt', '') + \"\"\"", "${1:Custom system prompt instructions}", "\"\"\"", " ", " return {", " \"system_prompt\": system_prompt,", " \"user_prompt\": prompt,", " \"model_parameters\": {", " \"${2:temperature}\": ${3:0.7}", " }", " }", "", "llm.register_command(", " \"${4:command_name}\",", " description=\"${5:Command description}\",", " parameters=[", " {", " \"name\": \"${6:param_name}\",", " \"description\": \"${7:Parameter description}\",", " \"required\": ${8:False},", " \"default\": ${9:\"default_value\"}", " }", " ],", " transform=transform_custom_command", ")" ], "description": "Register a custom symbolic command" }, "Flask API Integration": { "prefix": "ud-flask", "body": [ "from flask import Flask, request, jsonify", "from universal_developer import UniversalLLM", "import os", "", "app = Flask(__name__)", "", "llm = UniversalLLM(", " provider=\"${1|anthropic,openai,qwen,gemini,ollama|}\",", " api_key=os.environ.get(\"${2:${1/(anthropic|openai|qwen|gemini)/${1:/upcase}_API_KEY/}}\")", ")", "", "@app.route('/api/generate', methods=['POST'])", "def generate():", " data = request.json", " prompt = data.get('prompt')", " system_prompt = data.get('system_prompt', '')", " ", " # Get command from query param or default to /think", " command = request.args.get('command', 'think')", " ", " try:", " response = llm.generate(", " system_prompt=system_prompt,", " prompt=f\"/{command} {prompt}\"", " )", " return jsonify({'response': response})", " except Exception as e:", " return jsonify({'error': str(e)}), 500", "", "if __name__ == '__main__':", " app.run(debug=True)" ], "description": "Flask API integration with Universal Developer" }, "FastAPI Integration": { "prefix": "ud-fastapi", "body": [ "from fastapi import FastAPI, HTTPException, Query", "from pydantic import BaseModel", "from typing import Optional", "from universal_developer import UniversalLLM", "import os", "", "app = FastAPI()", "", "llm = UniversalLLM(", " provider=\"${1|anthropic,openai,qwen,gemini,ollama|}\",", " api_key=os.environ.get(\"${2:${1/(anthropic|openai|qwen|gemini)/${1:/upcase}_API_KEY/}}\")", ")", "", "class GenerateRequest(BaseModel):", " prompt: str", " system_prompt: Optional[str] = \"\"", "", "@app.post(\"/api/generate\")", "async def generate(", " request: GenerateRequest,", " command: str = Query(\"think\", description=\"Symbolic command to use\")", "):", " try:", " response = llm.generate(", " system_prompt=request.system_prompt,", " prompt=f\"/{command} {request.prompt}\"", " )", " return {\"response\": response}", " except Exception as e:", " raise HTTPException(status_code=500, detail=str(e))" ], "description": "FastAPI integration with Universal Developer" }, "Streamlit Integration": { "prefix": "ud-streamlit", "body": [ "import streamlit as st", "from universal_developer import UniversalLLM", "import os", "", "# Initialize LLM", "@st.cache_resource", "def get_llm():", " return UniversalLLM(", " provider=\"${1|anthropic,openai,qwen,gemini,ollama|}\",", " api_key=os.environ.get(\"${2:${1/(anthropic|openai|qwen|gemini)/${1:/upcase}_API_KEY/}}\")", " )", "", "llm = get_llm()", "", "st.title(\"Universal Developer Demo\")", "", "# Command selection", "command = st.selectbox(", " \"Select symbolic command\",", " [\"think\", \"fast\", \"loop\", \"reflect\", \"fork\", \"collapse\"]", ")", "", "# Command parameters", "if command == \"loop\":", " iterations = st.slider(\"Iterations\", 1, 5, 3)", " command_str = f\"/loop --iterations={iterations}\"", "elif command == \"fork\":", " count = st.slider(\"Alternative count\", 2, 5, 2)", " command_str = f\"/fork --count={count}\"", "else:", " command_str = f\"/{command}\"", "", "# User input", "prompt = st.text_area(\"Enter your prompt\", \"\")", "", "if st.button(\"Generate\") and prompt:", " with st.spinner(\"Generating response...\"):", " response = llm.generate(", " prompt=f\"{command_str} {prompt}\"", " )", " st.markdown(response)" ], "description": "Streamlit integration with Universal Developer" } }