File size: 17,399 Bytes
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5823b9
 
1433a8a
b5823b9
 
 
 
 
 
 
 
1433a8a
b5823b9
 
 
 
 
 
 
 
 
1433a8a
b5823b9
 
 
 
 
 
 
 
1433a8a
b5823b9
 
 
 
 
 
 
 
1433a8a
b5823b9
 
 
 
 
 
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
 
 
 
 
 
 
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
b5823b9
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5823b9
 
 
1433a8a
 
 
 
 
 
 
 
b5823b9
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5823b9
 
 
 
 
 
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5823b9
1433a8a
 
b5823b9
 
 
 
1433a8a
b5823b9
 
 
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
b5823b9
1433a8a
 
b5823b9
 
 
 
1433a8a
b5823b9
 
 
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
b5823b9
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:1047690
- loss:CoSENTLoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: That is evident from their failure , three times in a row , to
    get a big enough turnout to elect a president .
  sentences:
  - 'given a text, decide to which of a predefined set of classes it belongs.  examples:
    language identification, genre classification, sentiment analysis, and spam detection'
  - Three times in a row , they failed to get a big _ enough turnout to elect a president
    .
  - He said the Government still did not know the real reason the original Saudi buyer
    pulled out on August 21 .
- source_sentence: these use built-in and learned knowledge to make decisions and
    accomplish tasks that fulfill the intentions of the user.
  sentences:
  - It also features a 4.5 in back-lit LCD screen and memory expansion facilities
    .
  - '- set of interrelated components - collect, process, store and distribute info.
    - support decision-making, coordination, and control'
  - software programs that work without direct human intervention to carry out specific
    tasks for an individual user, business process, or software application -siri
    adapts to your preferences over time
- source_sentence: any location in storage can be accessed at any moment in approximately
    the same amount of time.
  sentences:
  - your study can adopt the original model used by the cited theorist but you can
    modify different variables depending on your study of the whole theory
  - an access method that can access any storage location directly and in any order;
    primary storage devices and disk storage devices use random access...
  - Branson said that his preference would be to operate a fully commercial service
    on routes to New York , Barbados and Dubai .
- source_sentence: United issued a statement saying it will " work professionally
    and cooperatively with all its unions . "
  sentences:
  - network that acts like the human brain; type of ai
  - a database system consists of one or more databases and a database management
    system (dbms).
  - Senior vice president Sara Fields said the airline " will work professionally
    and cooperatively with all our unions . "
- source_sentence: A European Union spokesman said the Commission was consulting EU
    member states " with a view to taking appropriate action if necessary " on the
    matter .
  sentences:
  - Justice Minister Martin Cauchon and Prime Minister Jean Chretien both have said
    the government will introduce legislation to decriminalize possession of small
    amounts of pot .
  - Laos 's second most important export destination - said it was consulting EU member
    states ' ' with a view to taking appropriate action if necessary ' ' on the matter
    .
  - the form data assumes and the possible range of values that the attribute defined
    as that type of data may express  1. text 2. numerical
datasets:
- redis/langcache-sentencepairs-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: val
      type: val
    metrics:
    - type: cosine_accuracy
      value: 0.7638310529446758
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.8640533685684204
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6912742186395134
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.825770378112793
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.6289243437982501
      name: Cosine Precision
    - type: cosine_recall
      value: 0.7673469387755102
      name: Cosine Recall
    - type: cosine_ap
      value: 0.7353968345121902
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.4778469995044085
      name: Cosine Mcc
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: test
      type: test
    metrics:
    - type: cosine_accuracy
      value: 0.7037777526966672
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.8524033427238464
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.7122170715871171
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.8118724822998047
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.5989283084033827
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8783612662942272
      name: Cosine Recall
    - type: cosine_ap
      value: 0.6476665223951498
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.44182914870985407
      name: Cosine Mcc
---

# Redis fine-tuned BiEncoder model for semantic caching on LangCache

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
    'A European Union spokesman said the Commission was consulting EU member states " with a view to taking appropriate action if necessary " on the matter .',
    "Laos 's second most important export destination - said it was consulting EU member states ' ' with a view to taking appropriate action if necessary ' ' on the matter .",
    'the form data assumes and the possible range of values that the attribute defined as that type of data may express  1. text 2. numerical',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0078, 0.8789, 0.4961],
#         [0.8789, 1.0000, 0.4648],
#         [0.4961, 0.4648, 1.0078]], dtype=torch.bfloat16)
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification

* Datasets: `val` and `test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                    | val        | test       |
|:--------------------------|:-----------|:-----------|
| cosine_accuracy           | 0.7638     | 0.7038     |
| cosine_accuracy_threshold | 0.8641     | 0.8524     |
| cosine_f1                 | 0.6913     | 0.7122     |
| cosine_f1_threshold       | 0.8258     | 0.8119     |
| cosine_precision          | 0.6289     | 0.5989     |
| cosine_recall             | 0.7673     | 0.8784     |
| **cosine_ap**             | **0.7354** | **0.6477** |
| cosine_mcc                | 0.4778     | 0.4418     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 8,405 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                        | label                                           |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                            | string                                                                           | int                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 24.89 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 24.3 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~45.80%</li><li>1: ~54.20%</li></ul> |
* Samples:
  | sentence1                                                                                                                             | sentence2                                                                                                                                          | label          |
  |:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .</code>                             | <code>" The foodservice pie business does not fit our long-term growth strategy .</code>                                                           | <code>1</code> |
  | <code>Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war .</code>       | <code>His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .</code>                | <code>0</code> |
  | <code>The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat .</code> | <code>The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .</code> | <code>0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 8,405 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                        | label                                           |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                            | string                                                                           | int                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 24.89 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 24.3 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~45.80%</li><li>1: ~54.20%</li></ul> |
* Samples:
  | sentence1                                                                                                                             | sentence2                                                                                                                                          | label          |
  |:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .</code>                             | <code>" The foodservice pie business does not fit our long-term growth strategy .</code>                                                           | <code>1</code> |
  | <code>Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war .</code>       | <code>His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .</code>                | <code>0</code> |
  | <code>The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat .</code> | <code>The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .</code> | <code>0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Logs
| Epoch | Step | val_cosine_ap | test_cosine_ap |
|:-----:|:----:|:-------------:|:--------------:|
| -1    | -1   | 0.7354        | 0.6477         |


### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->