Sentence Similarity
sentence-transformers
Safetensors
English
modernbert
biencoder
text-classification
sentence-pair-classification
semantic-similarity
semantic-search
retrieval
reranking
Generated from Trainer
dataset_size:1451941
loss:MultipleNegativesRankingLoss
Eval Results
text-embeddings-inference
File size: 17,399 Bytes
1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a b5823b9 1433a8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:1047690
- loss:CoSENTLoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: That is evident from their failure , three times in a row , to
get a big enough turnout to elect a president .
sentences:
- 'given a text, decide to which of a predefined set of classes it belongs. examples:
language identification, genre classification, sentiment analysis, and spam detection'
- Three times in a row , they failed to get a big _ enough turnout to elect a president
.
- He said the Government still did not know the real reason the original Saudi buyer
pulled out on August 21 .
- source_sentence: these use built-in and learned knowledge to make decisions and
accomplish tasks that fulfill the intentions of the user.
sentences:
- It also features a 4.5 in back-lit LCD screen and memory expansion facilities
.
- '- set of interrelated components - collect, process, store and distribute info.
- support decision-making, coordination, and control'
- software programs that work without direct human intervention to carry out specific
tasks for an individual user, business process, or software application -siri
adapts to your preferences over time
- source_sentence: any location in storage can be accessed at any moment in approximately
the same amount of time.
sentences:
- your study can adopt the original model used by the cited theorist but you can
modify different variables depending on your study of the whole theory
- an access method that can access any storage location directly and in any order;
primary storage devices and disk storage devices use random access...
- Branson said that his preference would be to operate a fully commercial service
on routes to New York , Barbados and Dubai .
- source_sentence: United issued a statement saying it will " work professionally
and cooperatively with all its unions . "
sentences:
- network that acts like the human brain; type of ai
- a database system consists of one or more databases and a database management
system (dbms).
- Senior vice president Sara Fields said the airline " will work professionally
and cooperatively with all our unions . "
- source_sentence: A European Union spokesman said the Commission was consulting EU
member states " with a view to taking appropriate action if necessary " on the
matter .
sentences:
- Justice Minister Martin Cauchon and Prime Minister Jean Chretien both have said
the government will introduce legislation to decriminalize possession of small
amounts of pot .
- Laos 's second most important export destination - said it was consulting EU member
states ' ' with a view to taking appropriate action if necessary ' ' on the matter
.
- the form data assumes and the possible range of values that the attribute defined
as that type of data may express 1. text 2. numerical
datasets:
- redis/langcache-sentencepairs-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: val
type: val
metrics:
- type: cosine_accuracy
value: 0.7638310529446758
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8640533685684204
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6912742186395134
name: Cosine F1
- type: cosine_f1_threshold
value: 0.825770378112793
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6289243437982501
name: Cosine Precision
- type: cosine_recall
value: 0.7673469387755102
name: Cosine Recall
- type: cosine_ap
value: 0.7353968345121902
name: Cosine Ap
- type: cosine_mcc
value: 0.4778469995044085
name: Cosine Mcc
- task:
type: binary-classification
name: Binary Classification
dataset:
name: test
type: test
metrics:
- type: cosine_accuracy
value: 0.7037777526966672
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8524033427238464
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7122170715871171
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8118724822998047
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5989283084033827
name: Cosine Precision
- type: cosine_recall
value: 0.8783612662942272
name: Cosine Recall
- type: cosine_ap
value: 0.6476665223951498
name: Cosine Ap
- type: cosine_mcc
value: 0.44182914870985407
name: Cosine Mcc
---
# Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
'A European Union spokesman said the Commission was consulting EU member states " with a view to taking appropriate action if necessary " on the matter .',
"Laos 's second most important export destination - said it was consulting EU member states ' ' with a view to taking appropriate action if necessary ' ' on the matter .",
'the form data assumes and the possible range of values that the attribute defined as that type of data may express 1. text 2. numerical',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0078, 0.8789, 0.4961],
# [0.8789, 1.0000, 0.4648],
# [0.4961, 0.4648, 1.0078]], dtype=torch.bfloat16)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Datasets: `val` and `test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | val | test |
|:--------------------------|:-----------|:-----------|
| cosine_accuracy | 0.7638 | 0.7038 |
| cosine_accuracy_threshold | 0.8641 | 0.8524 |
| cosine_f1 | 0.6913 | 0.7122 |
| cosine_f1_threshold | 0.8258 | 0.8119 |
| cosine_precision | 0.6289 | 0.5989 |
| cosine_recall | 0.7673 | 0.8784 |
| **cosine_ap** | **0.7354** | **0.6477** |
| cosine_mcc | 0.4778 | 0.4418 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 8,405 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 24.89 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 24.3 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~45.80%</li><li>1: ~54.20%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .</code> | <code>" The foodservice pie business does not fit our long-term growth strategy .</code> | <code>1</code> |
| <code>Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war .</code> | <code>His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .</code> | <code>0</code> |
| <code>The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat .</code> | <code>The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .</code> | <code>0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 8,405 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 24.89 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 24.3 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~45.80%</li><li>1: ~54.20%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .</code> | <code>" The foodservice pie business does not fit our long-term growth strategy .</code> | <code>1</code> |
| <code>Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war .</code> | <code>His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .</code> | <code>0</code> |
| <code>The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat .</code> | <code>The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .</code> | <code>0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Logs
| Epoch | Step | val_cosine_ap | test_cosine_ap |
|:-----:|:----:|:-------------:|:--------------:|
| -1 | -1 | 0.7354 | 0.6477 |
### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |