Sentence Similarity
sentence-transformers
Safetensors
English
modernbert
biencoder
text-classification
sentence-pair-classification
semantic-similarity
semantic-search
retrieval
reranking
Generated from Trainer
dataset_size:483820
loss:MultipleNegativesSymmetricRankingLoss
Eval Results
text-embeddings-inference
Add new SentenceTransformer model
Browse files- README.md +17 -17
- model.safetensors +1 -1
README.md
CHANGED
@@ -87,28 +87,28 @@ model-index:
|
|
87 |
type: test
|
88 |
metrics:
|
89 |
- type: cosine_accuracy
|
90 |
-
value: 0.
|
91 |
name: Cosine Accuracy
|
92 |
- type: cosine_accuracy_threshold
|
93 |
-
value: 0.
|
94 |
name: Cosine Accuracy Threshold
|
95 |
- type: cosine_f1
|
96 |
-
value: 0.
|
97 |
name: Cosine F1
|
98 |
- type: cosine_f1_threshold
|
99 |
-
value: 0.
|
100 |
name: Cosine F1 Threshold
|
101 |
- type: cosine_precision
|
102 |
-
value: 0.
|
103 |
name: Cosine Precision
|
104 |
- type: cosine_recall
|
105 |
-
value: 0.
|
106 |
name: Cosine Recall
|
107 |
- type: cosine_ap
|
108 |
-
value: 0.
|
109 |
name: Cosine Ap
|
110 |
- type: cosine_mcc
|
111 |
-
value: 0.
|
112 |
name: Cosine Mcc
|
113 |
---
|
114 |
|
@@ -213,14 +213,14 @@ You can finetune this model on your own dataset.
|
|
213 |
|
214 |
| Metric | Value |
|
215 |
|:--------------------------|:-----------|
|
216 |
-
| cosine_accuracy | 0.
|
217 |
-
| cosine_accuracy_threshold | 0.
|
218 |
-
| cosine_f1 | 0.
|
219 |
-
| cosine_f1_threshold | 0.
|
220 |
-
| cosine_precision | 0.
|
221 |
-
| cosine_recall | 0.
|
222 |
-
| **cosine_ap** | **0.
|
223 |
-
| cosine_mcc | 0.
|
224 |
|
225 |
<!--
|
226 |
## Bias, Risks and Limitations
|
@@ -293,7 +293,7 @@ You can finetune this model on your own dataset.
|
|
293 |
### Training Logs
|
294 |
| Epoch | Step | test_cosine_ap |
|
295 |
|:-----:|:----:|:--------------:|
|
296 |
-
| -1 | -1 | 0.
|
297 |
|
298 |
|
299 |
### Framework Versions
|
|
|
87 |
type: test
|
88 |
metrics:
|
89 |
- type: cosine_accuracy
|
90 |
+
value: 0.7035681462730365
|
91 |
name: Cosine Accuracy
|
92 |
- type: cosine_accuracy_threshold
|
93 |
+
value: 0.8473721742630005
|
94 |
name: Cosine Accuracy Threshold
|
95 |
- type: cosine_f1
|
96 |
+
value: 0.712274188436637
|
97 |
name: Cosine F1
|
98 |
- type: cosine_f1_threshold
|
99 |
+
value: 0.8116312026977539
|
100 |
name: Cosine F1 Threshold
|
101 |
- type: cosine_precision
|
102 |
+
value: 0.5987668417446905
|
103 |
name: Cosine Precision
|
104 |
- type: cosine_recall
|
105 |
+
value: 0.8788826815642458
|
106 |
name: Cosine Recall
|
107 |
- type: cosine_ap
|
108 |
+
value: 0.6473811496690576
|
109 |
name: Cosine Ap
|
110 |
- type: cosine_mcc
|
111 |
+
value: 0.4419218320172892
|
112 |
name: Cosine Mcc
|
113 |
---
|
114 |
|
|
|
213 |
|
214 |
| Metric | Value |
|
215 |
|:--------------------------|:-----------|
|
216 |
+
| cosine_accuracy | 0.7036 |
|
217 |
+
| cosine_accuracy_threshold | 0.8474 |
|
218 |
+
| cosine_f1 | 0.7123 |
|
219 |
+
| cosine_f1_threshold | 0.8116 |
|
220 |
+
| cosine_precision | 0.5988 |
|
221 |
+
| cosine_recall | 0.8789 |
|
222 |
+
| **cosine_ap** | **0.6474** |
|
223 |
+
| cosine_mcc | 0.4419 |
|
224 |
|
225 |
<!--
|
226 |
## Bias, Risks and Limitations
|
|
|
293 |
### Training Logs
|
294 |
| Epoch | Step | test_cosine_ap |
|
295 |
|:-----:|:----:|:--------------:|
|
296 |
+
| -1 | -1 | 0.6474 |
|
297 |
|
298 |
|
299 |
### Framework Versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 298041696
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95d02211c4cca89113f9f3e93ed91f5176bf50170faa2cb835f7bfea15bb9dd2
|
3 |
size 298041696
|