Add new SentenceTransformer model
Browse files- README.md +90 -115
 - model.safetensors +1 -1
 
    	
        README.md
    CHANGED
    
    | 
         @@ -12,58 +12,42 @@ tags: 
     | 
|
| 12 | 
         
             
            - retrieval
         
     | 
| 13 | 
         
             
            - reranking
         
     | 
| 14 | 
         
             
            - generated_from_trainer
         
     | 
| 15 | 
         
            -
            - dataset_size: 
     | 
| 16 | 
         
            -
            - loss: 
     | 
| 17 | 
         
             
            base_model: Alibaba-NLP/gte-modernbert-base
         
     | 
| 18 | 
         
             
            widget:
         
     | 
| 19 | 
         
            -
            - source_sentence:  
     | 
| 20 | 
         
            -
                get a big enough turnout to elect a president .
         
     | 
| 21 | 
         
             
              sentences:
         
     | 
| 22 | 
         
            -
              -  
     | 
| 23 | 
         
            -
                 
     | 
| 24 | 
         
            -
              -  
     | 
| 25 | 
         
            -
                 
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
            - source_sentence:  
     | 
| 29 | 
         
            -
                accomplish tasks that fulfill the intentions of the user.
         
     | 
| 30 | 
         
             
              sentences:
         
     | 
| 31 | 
         
            -
              -  
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
              -  
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
              - software programs that work without direct human intervention to carry out specific
         
     | 
| 36 | 
         
            -
                tasks for an individual user, business process, or software application -siri
         
     | 
| 37 | 
         
            -
                adapts to your preferences over time
         
     | 
| 38 | 
         
            -
            - source_sentence: any location in storage can be accessed at any moment in approximately
         
     | 
| 39 | 
         
            -
                the same amount of time.
         
     | 
| 40 | 
         
             
              sentences:
         
     | 
| 41 | 
         
            -
              -  
     | 
| 42 | 
         
            -
             
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
            - source_sentence: United issued a statement saying it will " work professionally
         
     | 
| 48 | 
         
            -
                and cooperatively with all its unions . "
         
     | 
| 49 | 
         
             
              sentences:
         
     | 
| 50 | 
         
            -
              -  
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
             
     | 
| 53 | 
         
            -
              -  
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
             
     | 
| 56 | 
         
            -
                member states " with a view to taking appropriate action if necessary " on the
         
     | 
| 57 | 
         
            -
                matter .
         
     | 
| 58 | 
         
             
              sentences:
         
     | 
| 59 | 
         
            -
              -  
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
            -
              - Laos 's second most important export destination - said it was consulting EU member
         
     | 
| 63 | 
         
            -
                states ' ' with a view to taking appropriate action if necessary ' ' on the matter
         
     | 
| 64 | 
         
            -
                .
         
     | 
| 65 | 
         
            -
              - the form data assumes and the possible range of values that the attribute defined
         
     | 
| 66 | 
         
            -
                as that type of data may express  1. text 2. numerical
         
     | 
| 67 | 
         
             
            datasets:
         
     | 
| 68 | 
         
             
            - redis/langcache-sentencepairs-v1
         
     | 
| 69 | 
         
             
            pipeline_tag: sentence-similarity
         
     | 
| 
         @@ -88,28 +72,28 @@ model-index: 
     | 
|
| 88 | 
         
             
                  type: val
         
     | 
| 89 | 
         
             
                metrics:
         
     | 
| 90 | 
         
             
                - type: cosine_accuracy
         
     | 
| 91 | 
         
            -
                  value: 0. 
     | 
| 92 | 
         
             
                  name: Cosine Accuracy
         
     | 
| 93 | 
         
             
                - type: cosine_accuracy_threshold
         
     | 
| 94 | 
         
            -
                  value: 0. 
     | 
| 95 | 
         
             
                  name: Cosine Accuracy Threshold
         
     | 
| 96 | 
         
             
                - type: cosine_f1
         
     | 
| 97 | 
         
            -
                  value: 0. 
     | 
| 98 | 
         
             
                  name: Cosine F1
         
     | 
| 99 | 
         
             
                - type: cosine_f1_threshold
         
     | 
| 100 | 
         
            -
                  value: 0. 
     | 
| 101 | 
         
             
                  name: Cosine F1 Threshold
         
     | 
| 102 | 
         
             
                - type: cosine_precision
         
     | 
| 103 | 
         
            -
                  value: 0 
     | 
| 104 | 
         
             
                  name: Cosine Precision
         
     | 
| 105 | 
         
             
                - type: cosine_recall
         
     | 
| 106 | 
         
            -
                  value: 0. 
     | 
| 107 | 
         
             
                  name: Cosine Recall
         
     | 
| 108 | 
         
             
                - type: cosine_ap
         
     | 
| 109 | 
         
            -
                  value: 0. 
     | 
| 110 | 
         
             
                  name: Cosine Ap
         
     | 
| 111 | 
         
             
                - type: cosine_mcc
         
     | 
| 112 | 
         
            -
                  value: 0. 
     | 
| 113 | 
         
             
                  name: Cosine Mcc
         
     | 
| 114 | 
         
             
              - task:
         
     | 
| 115 | 
         
             
                  type: binary-classification
         
     | 
| 
         @@ -119,28 +103,28 @@ model-index: 
     | 
|
| 119 | 
         
             
                  type: test
         
     | 
| 120 | 
         
             
                metrics:
         
     | 
| 121 | 
         
             
                - type: cosine_accuracy
         
     | 
| 122 | 
         
            -
                  value: 0. 
     | 
| 123 | 
         
             
                  name: Cosine Accuracy
         
     | 
| 124 | 
         
             
                - type: cosine_accuracy_threshold
         
     | 
| 125 | 
         
            -
                  value: 0. 
     | 
| 126 | 
         
             
                  name: Cosine Accuracy Threshold
         
     | 
| 127 | 
         
             
                - type: cosine_f1
         
     | 
| 128 | 
         
            -
                  value: 0. 
     | 
| 129 | 
         
             
                  name: Cosine F1
         
     | 
| 130 | 
         
             
                - type: cosine_f1_threshold
         
     | 
| 131 | 
         
            -
                  value: 0. 
     | 
| 132 | 
         
             
                  name: Cosine F1 Threshold
         
     | 
| 133 | 
         
             
                - type: cosine_precision
         
     | 
| 134 | 
         
            -
                  value: 0 
     | 
| 135 | 
         
             
                  name: Cosine Precision
         
     | 
| 136 | 
         
             
                - type: cosine_recall
         
     | 
| 137 | 
         
            -
                  value: 0. 
     | 
| 138 | 
         
             
                  name: Cosine Recall
         
     | 
| 139 | 
         
             
                - type: cosine_ap
         
     | 
| 140 | 
         
            -
                  value: 0 
     | 
| 141 | 
         
             
                  name: Cosine Ap
         
     | 
| 142 | 
         
             
                - type: cosine_mcc
         
     | 
| 143 | 
         
            -
                  value: 0. 
     | 
| 144 | 
         
             
                  name: Cosine Mcc
         
     | 
| 145 | 
         
             
            ---
         
     | 
| 146 | 
         | 
| 
         @@ -194,9 +178,9 @@ from sentence_transformers import SentenceTransformer 
     | 
|
| 194 | 
         
             
            model = SentenceTransformer("redis/langcache-embed-v3")
         
     | 
| 195 | 
         
             
            # Run inference
         
     | 
| 196 | 
         
             
            sentences = [
         
     | 
| 197 | 
         
            -
                'A  
     | 
| 198 | 
         
            -
                 
     | 
| 199 | 
         
            -
                ' 
     | 
| 200 | 
         
             
            ]
         
     | 
| 201 | 
         
             
            embeddings = model.encode(sentences)
         
     | 
| 202 | 
         
             
            print(embeddings.shape)
         
     | 
| 
         @@ -205,9 +189,9 @@ print(embeddings.shape) 
     | 
|
| 205 | 
         
             
            # Get the similarity scores for the embeddings
         
     | 
| 206 | 
         
             
            similarities = model.similarity(embeddings, embeddings)
         
     | 
| 207 | 
         
             
            print(similarities)
         
     | 
| 208 | 
         
            -
            # tensor([[1. 
     | 
| 209 | 
         
            -
            #         [0. 
     | 
| 210 | 
         
            -
            #         [0. 
     | 
| 211 | 
         
             
            ```
         
     | 
| 212 | 
         | 
| 213 | 
         
             
            <!--
         
     | 
| 
         @@ -243,16 +227,16 @@ You can finetune this model on your own dataset. 
     | 
|
| 243 | 
         
             
            * Datasets: `val` and `test`
         
     | 
| 244 | 
         
             
            * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
         
     | 
| 245 | 
         | 
| 246 | 
         
            -
            | Metric                    | val 
     | 
| 247 | 
         
            -
             
     | 
| 248 | 
         
            -
            | cosine_accuracy           | 0. 
     | 
| 249 | 
         
            -
            | cosine_accuracy_threshold | 0. 
     | 
| 250 | 
         
            -
            | cosine_f1                 | 0. 
     | 
| 251 | 
         
            -
            | cosine_f1_threshold       | 0. 
     | 
| 252 | 
         
            -
            | cosine_precision          | 0 
     | 
| 253 | 
         
            -
            | cosine_recall             | 0. 
     | 
| 254 | 
         
            -
            | **cosine_ap**             | **0 
     | 
| 255 | 
         
            -
            | cosine_mcc                | 0. 
     | 
| 256 | 
         | 
| 257 | 
         
             
            <!--
         
     | 
| 258 | 
         
             
            ## Bias, Risks and Limitations
         
     | 
| 
         @@ -273,24 +257,25 @@ You can finetune this model on your own dataset. 
     | 
|
| 273 | 
         
             
            #### LangCache Sentence Pairs (all)
         
     | 
| 274 | 
         | 
| 275 | 
         
             
            * Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
         
     | 
| 276 | 
         
            -
            * Size:  
     | 
| 277 | 
         
            -
            * Columns: <code>sentence1</code 
     | 
| 278 | 
         
             
            * Approximate statistics based on the first 1000 samples:
         
     | 
| 279 | 
         
            -
              |         | sentence1                                                                         | sentence2 
     | 
| 280 | 
         
            -
               
     | 
| 281 | 
         
            -
              | type    | string                                                                            | string 
     | 
| 282 | 
         
            -
              | details | <ul><li>min:  
     | 
| 283 | 
         
             
            * Samples:
         
     | 
| 284 | 
         
            -
              | sentence1 
     | 
| 285 | 
         
            -
               
     | 
| 286 | 
         
            -
              | <code> 
     | 
| 287 | 
         
            -
              | <code> 
     | 
| 288 | 
         
            -
              | <code> 
     | 
| 289 | 
         
            -
            * Loss: [<code> 
     | 
| 290 | 
         
             
              ```json
         
     | 
| 291 | 
         
             
              {
         
     | 
| 292 | 
         
             
                  "scale": 20.0,
         
     | 
| 293 | 
         
            -
                  "similarity_fct": " 
     | 
| 
         | 
|
| 294 | 
         
             
              }
         
     | 
| 295 | 
         
             
              ```
         
     | 
| 296 | 
         | 
| 
         @@ -299,31 +284,32 @@ You can finetune this model on your own dataset. 
     | 
|
| 299 | 
         
             
            #### LangCache Sentence Pairs (all)
         
     | 
| 300 | 
         | 
| 301 | 
         
             
            * Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
         
     | 
| 302 | 
         
            -
            * Size:  
     | 
| 303 | 
         
            -
            * Columns: <code>sentence1</code 
     | 
| 304 | 
         
             
            * Approximate statistics based on the first 1000 samples:
         
     | 
| 305 | 
         
            -
              |         | sentence1                                                                         | sentence2 
     | 
| 306 | 
         
            -
               
     | 
| 307 | 
         
            -
              | type    | string                                                                            | string 
     | 
| 308 | 
         
            -
              | details | <ul><li>min:  
     | 
| 309 | 
         
             
            * Samples:
         
     | 
| 310 | 
         
            -
              | sentence1 
     | 
| 311 | 
         
            -
               
     | 
| 312 | 
         
            -
              | <code> 
     | 
| 313 | 
         
            -
              | <code> 
     | 
| 314 | 
         
            -
              | <code> 
     | 
| 315 | 
         
            -
            * Loss: [<code> 
     | 
| 316 | 
         
             
              ```json
         
     | 
| 317 | 
         
             
              {
         
     | 
| 318 | 
         
             
                  "scale": 20.0,
         
     | 
| 319 | 
         
            -
                  "similarity_fct": " 
     | 
| 
         | 
|
| 320 | 
         
             
              }
         
     | 
| 321 | 
         
             
              ```
         
     | 
| 322 | 
         | 
| 323 | 
         
             
            ### Training Logs
         
     | 
| 324 | 
         
             
            | Epoch | Step | val_cosine_ap | test_cosine_ap |
         
     | 
| 325 | 
         
             
            |:-----:|:----:|:-------------:|:--------------:|
         
     | 
| 326 | 
         
            -
            | -1    | -1   |  
     | 
| 327 | 
         | 
| 328 | 
         | 
| 329 | 
         
             
            ### Framework Versions
         
     | 
| 
         @@ -352,17 +338,6 @@ You can finetune this model on your own dataset. 
     | 
|
| 352 | 
         
             
            }
         
     | 
| 353 | 
         
             
            ```
         
     | 
| 354 | 
         | 
| 355 | 
         
            -
            #### CoSENTLoss
         
     | 
| 356 | 
         
            -
            ```bibtex
         
     | 
| 357 | 
         
            -
            @online{kexuefm-8847,
         
     | 
| 358 | 
         
            -
                title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
         
     | 
| 359 | 
         
            -
                author={Su Jianlin},
         
     | 
| 360 | 
         
            -
                year={2022},
         
     | 
| 361 | 
         
            -
                month={Jan},
         
     | 
| 362 | 
         
            -
                url={https://kexue.fm/archives/8847},
         
     | 
| 363 | 
         
            -
            }
         
     | 
| 364 | 
         
            -
            ```
         
     | 
| 365 | 
         
            -
             
     | 
| 366 | 
         
             
            <!--
         
     | 
| 367 | 
         
             
            ## Glossary
         
     | 
| 368 | 
         | 
| 
         | 
|
| 12 | 
         
             
            - retrieval
         
     | 
| 13 | 
         
             
            - reranking
         
     | 
| 14 | 
         
             
            - generated_from_trainer
         
     | 
| 15 | 
         
            +
            - dataset_size:478600
         
     | 
| 16 | 
         
            +
            - loss:MultipleNegativesSymmetricRankingLoss
         
     | 
| 17 | 
         
             
            base_model: Alibaba-NLP/gte-modernbert-base
         
     | 
| 18 | 
         
             
            widget:
         
     | 
| 19 | 
         
            +
            - source_sentence: The brown dog is sniffing the back of a small black dog
         
     | 
| 
         | 
|
| 20 | 
         
             
              sentences:
         
     | 
| 21 | 
         
            +
              - Pickens died in Edgefield and was buried on the Willow Brook Cemetery in Edgefield
         
     | 
| 22 | 
         
            +
                , South Carolina .
         
     | 
| 23 | 
         
            +
              - It is notable as the oldest Chinatown in Australia , the oldest continuous Chinese
         
     | 
| 24 | 
         
            +
                settlement in Australia , and the longest continuously running Chinatown outside
         
     | 
| 25 | 
         
            +
                of Asia .
         
     | 
| 26 | 
         
            +
              - There is no large brown dog and small grey dog standing on a rocky surface
         
     | 
| 27 | 
         
            +
            - source_sentence: Is it harmful from security perspectives to use public Wi-Fi?
         
     | 
| 
         | 
|
| 28 | 
         
             
              sentences:
         
     | 
| 29 | 
         
            +
              - What is the best way to drive traffic to a website?
         
     | 
| 30 | 
         
            +
              - What startups have used GitHub?
         
     | 
| 31 | 
         
            +
              - Is there something wrong with using public Wi-Fi?
         
     | 
| 32 | 
         
            +
            - source_sentence: How can we make education better?
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 33 | 
         
             
              sentences:
         
     | 
| 34 | 
         
            +
              - What are some things that would make education better today?
         
     | 
| 35 | 
         
            +
              - Mistery works full-time as a graffiti artist and is also Emcee / Rapper in the
         
     | 
| 36 | 
         
            +
                Brethren group .
         
     | 
| 37 | 
         
            +
              - Jammu Airport operates flights to many cities in India such as Delhi , Leh and
         
     | 
| 38 | 
         
            +
                Srinagar .
         
     | 
| 39 | 
         
            +
            - source_sentence: So are you.
         
     | 
| 
         | 
|
| 
         | 
|
| 40 | 
         
             
              sentences:
         
     | 
| 41 | 
         
            +
              - 'Brown said afterwards that he was surprised they had not scored five , and Astall
         
     | 
| 42 | 
         
            +
                wrote in his newspaper column :'
         
     | 
| 43 | 
         
            +
              - Just like yourself.
         
     | 
| 44 | 
         
            +
              - How do I actually lose weight?
         
     | 
| 45 | 
         
            +
            - source_sentence: A group of boys are playing with a ball in front of a large door
         
     | 
| 46 | 
         
            +
                made of wood
         
     | 
| 
         | 
|
| 
         | 
|
| 47 | 
         
             
              sentences:
         
     | 
| 48 | 
         
            +
              - The children are playing in front of a large door
         
     | 
| 49 | 
         
            +
              - What is the blind spot?
         
     | 
| 50 | 
         
            +
              - What are some good techniques for controlling your anger?
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 51 | 
         
             
            datasets:
         
     | 
| 52 | 
         
             
            - redis/langcache-sentencepairs-v1
         
     | 
| 53 | 
         
             
            pipeline_tag: sentence-similarity
         
     | 
| 
         | 
|
| 72 | 
         
             
                  type: val
         
     | 
| 73 | 
         
             
                metrics:
         
     | 
| 74 | 
         
             
                - type: cosine_accuracy
         
     | 
| 75 | 
         
            +
                  value: 0.9996860282574568
         
     | 
| 76 | 
         
             
                  name: Cosine Accuracy
         
     | 
| 77 | 
         
             
                - type: cosine_accuracy_threshold
         
     | 
| 78 | 
         
            +
                  value: 0.4801735281944275
         
     | 
| 79 | 
         
             
                  name: Cosine Accuracy Threshold
         
     | 
| 80 | 
         
             
                - type: cosine_f1
         
     | 
| 81 | 
         
            +
                  value: 0.9998429894802952
         
     | 
| 82 | 
         
             
                  name: Cosine F1
         
     | 
| 83 | 
         
             
                - type: cosine_f1_threshold
         
     | 
| 84 | 
         
            +
                  value: 0.4801735281944275
         
     | 
| 85 | 
         
             
                  name: Cosine F1 Threshold
         
     | 
| 86 | 
         
             
                - type: cosine_precision
         
     | 
| 87 | 
         
            +
                  value: 1.0
         
     | 
| 88 | 
         
             
                  name: Cosine Precision
         
     | 
| 89 | 
         
             
                - type: cosine_recall
         
     | 
| 90 | 
         
            +
                  value: 0.9996860282574568
         
     | 
| 91 | 
         
             
                  name: Cosine Recall
         
     | 
| 92 | 
         
             
                - type: cosine_ap
         
     | 
| 93 | 
         
            +
                  value: 0.9999999999999999
         
     | 
| 94 | 
         
             
                  name: Cosine Ap
         
     | 
| 95 | 
         
             
                - type: cosine_mcc
         
     | 
| 96 | 
         
            +
                  value: 0.0
         
     | 
| 97 | 
         
             
                  name: Cosine Mcc
         
     | 
| 98 | 
         
             
              - task:
         
     | 
| 99 | 
         
             
                  type: binary-classification
         
     | 
| 
         | 
|
| 103 | 
         
             
                  type: test
         
     | 
| 104 | 
         
             
                metrics:
         
     | 
| 105 | 
         
             
                - type: cosine_accuracy
         
     | 
| 106 | 
         
            +
                  value: 0.9999627560521416
         
     | 
| 107 | 
         
             
                  name: Cosine Accuracy
         
     | 
| 108 | 
         
             
                - type: cosine_accuracy_threshold
         
     | 
| 109 | 
         
            +
                  value: 0.42059871554374695
         
     | 
| 110 | 
         
             
                  name: Cosine Accuracy Threshold
         
     | 
| 111 | 
         
             
                - type: cosine_f1
         
     | 
| 112 | 
         
            +
                  value: 0.9999813776792864
         
     | 
| 113 | 
         
             
                  name: Cosine F1
         
     | 
| 114 | 
         
             
                - type: cosine_f1_threshold
         
     | 
| 115 | 
         
            +
                  value: 0.42059871554374695
         
     | 
| 116 | 
         
             
                  name: Cosine F1 Threshold
         
     | 
| 117 | 
         
             
                - type: cosine_precision
         
     | 
| 118 | 
         
            +
                  value: 1.0
         
     | 
| 119 | 
         
             
                  name: Cosine Precision
         
     | 
| 120 | 
         
             
                - type: cosine_recall
         
     | 
| 121 | 
         
            +
                  value: 0.9999627560521416
         
     | 
| 122 | 
         
             
                  name: Cosine Recall
         
     | 
| 123 | 
         
             
                - type: cosine_ap
         
     | 
| 124 | 
         
            +
                  value: 1.0
         
     | 
| 125 | 
         
             
                  name: Cosine Ap
         
     | 
| 126 | 
         
             
                - type: cosine_mcc
         
     | 
| 127 | 
         
            +
                  value: 0.0
         
     | 
| 128 | 
         
             
                  name: Cosine Mcc
         
     | 
| 129 | 
         
             
            ---
         
     | 
| 130 | 
         | 
| 
         | 
|
| 178 | 
         
             
            model = SentenceTransformer("redis/langcache-embed-v3")
         
     | 
| 179 | 
         
             
            # Run inference
         
     | 
| 180 | 
         
             
            sentences = [
         
     | 
| 181 | 
         
            +
                'A group of boys are playing with a ball in front of a large door made of wood',
         
     | 
| 182 | 
         
            +
                'The children are playing in front of a large door',
         
     | 
| 183 | 
         
            +
                'What are some good techniques for controlling your anger?',
         
     | 
| 184 | 
         
             
            ]
         
     | 
| 185 | 
         
             
            embeddings = model.encode(sentences)
         
     | 
| 186 | 
         
             
            print(embeddings.shape)
         
     | 
| 
         | 
|
| 189 | 
         
             
            # Get the similarity scores for the embeddings
         
     | 
| 190 | 
         
             
            similarities = model.similarity(embeddings, embeddings)
         
     | 
| 191 | 
         
             
            print(similarities)
         
     | 
| 192 | 
         
            +
            # tensor([[1.0000, 0.8672, 0.4121],
         
     | 
| 193 | 
         
            +
            #         [0.8672, 1.0000, 0.4219],
         
     | 
| 194 | 
         
            +
            #         [0.4121, 0.4219, 1.0000]], dtype=torch.bfloat16)
         
     | 
| 195 | 
         
             
            ```
         
     | 
| 196 | 
         | 
| 197 | 
         
             
            <!--
         
     | 
| 
         | 
|
| 227 | 
         
             
            * Datasets: `val` and `test`
         
     | 
| 228 | 
         
             
            * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
         
     | 
| 229 | 
         | 
| 230 | 
         
            +
            | Metric                    | val     | test    |
         
     | 
| 231 | 
         
            +
            |:--------------------------|:--------|:--------|
         
     | 
| 232 | 
         
            +
            | cosine_accuracy           | 0.9997  | 1.0     |
         
     | 
| 233 | 
         
            +
            | cosine_accuracy_threshold | 0.4802  | 0.4206  |
         
     | 
| 234 | 
         
            +
            | cosine_f1                 | 0.9998  | 1.0     |
         
     | 
| 235 | 
         
            +
            | cosine_f1_threshold       | 0.4802  | 0.4206  |
         
     | 
| 236 | 
         
            +
            | cosine_precision          | 1.0     | 1.0     |
         
     | 
| 237 | 
         
            +
            | cosine_recall             | 0.9997  | 1.0     |
         
     | 
| 238 | 
         
            +
            | **cosine_ap**             | **1.0** | **1.0** |
         
     | 
| 239 | 
         
            +
            | cosine_mcc                | 0.0     | 0.0     |
         
     | 
| 240 | 
         | 
| 241 | 
         
             
            <!--
         
     | 
| 242 | 
         
             
            ## Bias, Risks and Limitations
         
     | 
| 
         | 
|
| 257 | 
         
             
            #### LangCache Sentence Pairs (all)
         
     | 
| 258 | 
         | 
| 259 | 
         
             
            * Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
         
     | 
| 260 | 
         
            +
            * Size: 26,850 training samples
         
     | 
| 261 | 
         
            +
            * Columns: <code>sentence1</code> and <code>sentence2</code>
         
     | 
| 262 | 
         
             
            * Approximate statistics based on the first 1000 samples:
         
     | 
| 263 | 
         
            +
              |         | sentence1                                                                         | sentence2                                                                         |
         
     | 
| 264 | 
         
            +
              |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
         
     | 
| 265 | 
         
            +
              | type    | string                                                                            | string                                                                            |
         
     | 
| 266 | 
         
            +
              | details | <ul><li>min: 4 tokens</li><li>mean: 16.76 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 16.58 tokens</li><li>max: 44 tokens</li></ul> |
         
     | 
| 267 | 
         
             
            * Samples:
         
     | 
| 268 | 
         
            +
              | sentence1                                                                              | sentence2                                                                                   |
         
     | 
| 269 | 
         
            +
              |:---------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|
         
     | 
| 270 | 
         
            +
              | <code>A chef is preparing a meal</code>                                                | <code>Some food is being prepared by a chef</code>                                          |
         
     | 
| 271 | 
         
            +
              | <code>The presentation is being watched by a classroom of students</code>              | <code>A classroom is full of students</code>                                                |
         
     | 
| 272 | 
         
            +
              | <code>Garden River , located north of Garden River Airport , Alberta , Canada .</code> | <code>Garden River , , is located north of Garden River Airport , Alberta , Canada .</code> |
         
     | 
| 273 | 
         
            +
            * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
         
     | 
| 274 | 
         
             
              ```json
         
     | 
| 275 | 
         
             
              {
         
     | 
| 276 | 
         
             
                  "scale": 20.0,
         
     | 
| 277 | 
         
            +
                  "similarity_fct": "cos_sim",
         
     | 
| 278 | 
         
            +
                  "gather_across_devices": false
         
     | 
| 279 | 
         
             
              }
         
     | 
| 280 | 
         
             
              ```
         
     | 
| 281 | 
         | 
| 
         | 
|
| 284 | 
         
             
            #### LangCache Sentence Pairs (all)
         
     | 
| 285 | 
         | 
| 286 | 
         
             
            * Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
         
     | 
| 287 | 
         
            +
            * Size: 26,850 evaluation samples
         
     | 
| 288 | 
         
            +
            * Columns: <code>sentence1</code> and <code>sentence2</code>
         
     | 
| 289 | 
         
             
            * Approximate statistics based on the first 1000 samples:
         
     | 
| 290 | 
         
            +
              |         | sentence1                                                                         | sentence2                                                                         |
         
     | 
| 291 | 
         
            +
              |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
         
     | 
| 292 | 
         
            +
              | type    | string                                                                            | string                                                                            |
         
     | 
| 293 | 
         
            +
              | details | <ul><li>min: 4 tokens</li><li>mean: 16.76 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 16.58 tokens</li><li>max: 44 tokens</li></ul> |
         
     | 
| 294 | 
         
             
            * Samples:
         
     | 
| 295 | 
         
            +
              | sentence1                                                                              | sentence2                                                                                   |
         
     | 
| 296 | 
         
            +
              |:---------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|
         
     | 
| 297 | 
         
            +
              | <code>A chef is preparing a meal</code>                                                | <code>Some food is being prepared by a chef</code>                                          |
         
     | 
| 298 | 
         
            +
              | <code>The presentation is being watched by a classroom of students</code>              | <code>A classroom is full of students</code>                                                |
         
     | 
| 299 | 
         
            +
              | <code>Garden River , located north of Garden River Airport , Alberta , Canada .</code> | <code>Garden River , , is located north of Garden River Airport , Alberta , Canada .</code> |
         
     | 
| 300 | 
         
            +
            * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
         
     | 
| 301 | 
         
             
              ```json
         
     | 
| 302 | 
         
             
              {
         
     | 
| 303 | 
         
             
                  "scale": 20.0,
         
     | 
| 304 | 
         
            +
                  "similarity_fct": "cos_sim",
         
     | 
| 305 | 
         
            +
                  "gather_across_devices": false
         
     | 
| 306 | 
         
             
              }
         
     | 
| 307 | 
         
             
              ```
         
     | 
| 308 | 
         | 
| 309 | 
         
             
            ### Training Logs
         
     | 
| 310 | 
         
             
            | Epoch | Step | val_cosine_ap | test_cosine_ap |
         
     | 
| 311 | 
         
             
            |:-----:|:----:|:-------------:|:--------------:|
         
     | 
| 312 | 
         
            +
            | -1    | -1   | 1.0000        | 1.0            |
         
     | 
| 313 | 
         | 
| 314 | 
         | 
| 315 | 
         
             
            ### Framework Versions
         
     | 
| 
         | 
|
| 338 | 
         
             
            }
         
     | 
| 339 | 
         
             
            ```
         
     | 
| 340 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 341 | 
         
             
            <!--
         
     | 
| 342 | 
         
             
            ## Glossary
         
     | 
| 343 | 
         | 
    	
        model.safetensors
    CHANGED
    
    | 
         @@ -1,3 +1,3 @@ 
     | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256: 
     | 
| 3 | 
         
             
            size 298041696
         
     | 
| 
         | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:95d02211c4cca89113f9f3e93ed91f5176bf50170faa2cb835f7bfea15bb9dd2
         
     | 
| 3 | 
         
             
            size 298041696
         
     |