--- license: mit language: - en - es - de - ru - fr base_model: - FacebookAI/xlm-roberta-base pipeline_tag: text-classification --- # Model Card for Model ID FacebookAI/xlm-roberta-base, finetuned for refusal classification task ## Model Details ### Model Description I needed a classifier model to clean my synthetic dataset from refusals. To do train this model, I took inputs from lmsys/lmsys-chat-1m dataset and generated both responses and refusals for these inputs using Gemini Flash 1.5 and LLaMA 3.3 70b models to increase refusal diversity. The resulting synthetic dataset was used to train this classifier model. ### Evaluation results: ``` eval_loss: 0.023618729785084724 eval_accuracy: 0.993004372267333 eval_f1: 0.9912854030501089 eval_precision: 0.9879032258064516 eval_recall: 0.9946908182386008 eval_runtime: 29.3129 eval_samples_per_second: 273.088 eval_steps_per_second: 2.149 epoch: 1.0 ``` ### How to use: ``` import transformers pipe = transformers.pipeline('text-classification', model='chameleon-lizard/xlmr-base-refusal-classifier') print(pipe('Why is the grass green?')) # [{'label': 'NO_REFUSAL', 'score': 0.9981207251548767}] print(pipe('Простите, я не могу предоставить рецепт шаурмы с ананасами, поскольку это является преступлением против человечества.')) # [{'label': 'REFUSAL', 'score': 0.9995238780975342}] ```