File size: 1,130 Bytes
7881983 507e0a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
datasets:
- abisee/cnn_dailymail
language:
- en
base_model:
- google-t5/t5-small
pipeline_tag: summarization
---
# AML Text Summarization T5 Model
This is a text summarization model based on the T5-Small architecture, developed as part of the Advanced Machine Learning course at the University of Bremen.
## Model Description
This model is fine-tuned on the CNN/Daily Mail dataset for abstractive text summarization. It uses the T5-Small (Text-To-Text Transfer Transformer) architecture.
## Usage
```
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("s0urin/aml-text-summarization-t5")
model = AutoModelForSeq2SeqLM.from_pretrained("s0urin/aml-text-summarization-t5")
text = "Your long text here..."
inputs = tokenizer("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(inputs.input_ids, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
summary = tokenizer.decode(outputs, skip_special_tokens=True)
print(summary)
```
## Authors
- Sourin Kumar Pal
- Jassim Hameed Ayobkhan |