File size: 742 Bytes
6a2dcd7
 
8ac9444
6a2dcd7
 
8ac9444
6a2dcd7
8ac9444
6a2dcd7
 
 
8ac9444
6a2dcd7
8ac9444
 
 
6a2dcd7
8ac9444
ef21d04
 
6a2dcd7
8ac9444
 
 
6a2dcd7
8ac9444
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
---
library_name: transformers
license: mit
---

# ContentVec

The ContentVec model in safetensors format, compatible with HuggingFace Transformers.

## Uses

To extract features, use the following code:

```python
from transformers import AutoProcessor, HubertModel
import librosa

# Load the processor and model
processor = AutoProcessor.from_pretrained("safe-models/ContentVec")
hubert = HubertModel.from_pretrained("safe-models/ContentVec")

# Read the audio
audio, sr = librosa.load("test.wav", sr=16000)
input_values = processor(audio, sampling_rate=sr, return_tensors="pt").input_values

# Get the layer 12 output as the feature
feats = hubert(input_values, output_hidden_states=True)["hidden_states"][12]
print(f"{feats.shape=}")
```