File size: 2,559 Bytes
389b4d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xlsr-53_toy_train_data_augmented
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xlsr-53_toy_train_data_augmented

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5016
- Wer: 0.4656

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.418         | 1.05  | 250  | 3.4171          | 1.0    |
| 3.0886        | 2.1   | 500  | 3.4681          | 1.0    |
| 2.9422        | 3.15  | 750  | 2.6151          | 1.0    |
| 1.3195        | 4.2   | 1000 | 0.8789          | 0.7739 |
| 0.9154        | 5.25  | 1250 | 0.6364          | 0.6518 |
| 0.6519        | 6.3   | 1500 | 0.5682          | 0.5949 |
| 0.5622        | 7.35  | 1750 | 0.5273          | 0.5625 |
| 0.4965        | 8.4   | 2000 | 0.4891          | 0.5283 |
| 0.4283        | 9.45  | 2250 | 0.5018          | 0.5260 |
| 0.4019        | 10.5  | 2500 | 0.5016          | 0.5006 |
| 0.3585        | 11.55 | 2750 | 0.5047          | 0.5003 |
| 0.3275        | 12.6  | 3000 | 0.5148          | 0.4866 |
| 0.3427        | 13.65 | 3250 | 0.5035          | 0.4786 |
| 0.3229        | 14.7  | 3500 | 0.4855          | 0.4768 |
| 0.3332        | 15.75 | 3750 | 0.5040          | 0.4769 |
| 0.2861        | 16.81 | 4000 | 0.5138          | 0.4669 |
| 0.3029        | 17.86 | 4250 | 0.5133          | 0.4670 |
| 0.2633        | 18.91 | 4500 | 0.5063          | 0.4637 |
| 0.2621        | 19.96 | 4750 | 0.5016          | 0.4656 |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.11.0+cu102
- Datasets 2.0.0
- Tokenizers 0.11.6