File size: 1,971 Bytes
			
			| 21b1eb1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xlsr-53_toy_train_data_random_low_pass
  results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53_toy_train_data_random_low_pass
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6572
- Wer: 0.4973
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.0834        | 2.1   | 500  | 3.4478          | 1.0    |
| 1.0735        | 4.2   | 1000 | 0.9113          | 0.7815 |
| 0.5516        | 6.3   | 1500 | 0.7035          | 0.6081 |
| 0.4023        | 8.4   | 2000 | 0.6647          | 0.5649 |
| 0.3423        | 10.5  | 2500 | 0.6613          | 0.5450 |
| 0.2938        | 12.6  | 3000 | 0.6967          | 0.5318 |
| 0.2902        | 14.7  | 3500 | 0.6430          | 0.5089 |
| 0.2372        | 16.81 | 4000 | 0.6653          | 0.5045 |
| 0.2148        | 18.91 | 4500 | 0.6572          | 0.4973 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu102
- Datasets 2.0.0
- Tokenizers 0.12.0
 |