import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchaudio.transforms import MelSpectrogram def adversarial_g_loss(y_disc_gen): loss = 0.0 for i in range(len(y_disc_gen)): #print(y_disc_gen[i].shape) # assert 1==2 stft_loss = F.relu(1-y_disc_gen[i]).mean().squeeze() loss += stft_loss return loss/len(y_disc_gen) def feature_loss(fmap_r, fmap_gen): loss = 0.0 for i in range(len(fmap_r)): for j in range(len(fmap_r[i])): stft_loss = ((fmap_r[i][j]-fmap_gen[i][j]).abs()/(fmap_r[i][j].abs().mean())).mean() loss += stft_loss return loss/(len(fmap_r)*len(fmap_r[0])) def sim_loss(y_disc_r, y_disc_gen): loss = 0.0 for i in range(len(y_disc_r)): loss += F.mse_loss(y_disc_r[i], y_disc_gen[i]) return loss/len(y_disc_r) def sisnr_loss(x, s, eps=1e-8): """ calculate training loss input: x: separated signal, N x S tensor, estimate value s: reference signal, N x S tensor, True value Return: sisnr: N tensor """ if x.shape != s.shape: if x.shape[-1] > s.shape[-1]: x = x[:, :s.shape[-1]] else: s = s[:, :x.shape[-1]] def l2norm(mat, keepdim=False): return torch.norm(mat, dim=-1, keepdim=keepdim) if x.shape != s.shape: raise RuntimeError( "Dimention mismatch when calculate si-snr, {} vs {}".format( x.shape, s.shape)) x_zm = x - torch.mean(x, dim=-1, keepdim=True) s_zm = s - torch.mean(s, dim=-1, keepdim=True) t = torch.sum( x_zm * s_zm, dim=-1, keepdim=True) * s_zm / (l2norm(s_zm, keepdim=True)**2 + eps) loss = -20. * torch.log10(eps + l2norm(t) / (l2norm(x_zm - t) + eps)) return torch.sum(loss) / x.shape[0] def reconstruction_loss(x, G_x, args, eps=1e-7): L = 100*F.mse_loss(x, G_x) # wav L1 loss #loss_sisnr = sisnr_loss(G_x, x) # #L += 0.01*loss_sisnr # print('L0 ', L) # print('loss_sisnr ', 0.01*loss_sisnr) # print('L0 ', L) for i in range(6,11): s = 2**i melspec = MelSpectrogram(sample_rate=args.sr, n_fft=s, hop_length=s//4, n_mels=64, wkwargs={"device": args.device}).to(args.device) S_x = melspec(x) S_G_x = melspec(G_x) loss = ((S_x-S_G_x).abs().mean() + (((torch.log(S_x.abs()+eps)-torch.log(S_G_x.abs()+eps))**2).mean(dim=-2)**0.5).mean())/(i) L += loss #print('i ,loss ', i, loss) #assert 1==2 return L def criterion_d(y_disc_r, y_disc_gen, fmap_r_det, fmap_gen_det): loss = 0.0 loss_f = feature_loss(fmap_r_det, fmap_gen_det) for i in range(len(y_disc_r)): loss += F.relu(1-y_disc_r[i]).mean() + F.relu(1+y_disc_gen[i]).mean() return loss/len(y_disc_gen) + 0.0*loss_f def criterion_g(commit_loss, x, G_x, fmap_r, fmap_gen, y_disc_r, y_disc_gen, args): adv_g_loss = adversarial_g_loss(y_disc_gen) feat_loss = feature_loss(fmap_r, fmap_gen) + sim_loss(y_disc_r, y_disc_gen) # 预测结果也应该尽可能相似 rec_loss = reconstruction_loss(x.contiguous(), G_x.contiguous(), args) total_loss = args.LAMBDA_COM * commit_loss + args.LAMBDA_ADV*adv_g_loss + \ args.LAMBDA_FEAT*feat_loss + args.LAMBDA_REC*rec_loss return total_loss, adv_g_loss, feat_loss, rec_loss def adopt_weight(weight, global_step, threshold=0, value=0.): if global_step < threshold: weight = value return weight def adopt_dis_weight(weight, global_step, threshold=0, value=0.): if global_step % 3 == 0: # 0,3,6,9,13....这些时间步,不更新dis weight = value return weight def calculate_adaptive_weight(nll_loss, g_loss, last_layer, args): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: print('last_layer cannot be none') assert 1==2 d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 1.0, 1.0).detach() d_weight = d_weight * args.LAMBDA_ADV return d_weight def loss_g(codebook_loss, inputs, reconstructions, fmap_r, fmap_gen, y_disc_r, y_disc_gen, global_step, last_layer=None, is_training=True, args=None): rec_loss = reconstruction_loss(inputs.contiguous(), reconstructions.contiguous(), args) adv_g_loss = adversarial_g_loss(y_disc_gen) feat_loss = feature_loss(fmap_r, fmap_gen) + sim_loss(y_disc_r, y_disc_gen) # d_weight = torch.tensor(1.0) # try: # d_weight = calculate_adaptive_weight(rec_loss, adv_g_loss, last_layer, args) # 动态调整重构损失和对抗损失 # except RuntimeError: # assert not is_training # d_weight = torch.tensor(0.0) disc_factor = adopt_weight(args.LAMBDA_ADV, global_step, threshold=args.discriminator_iter_start) #feat_factor = adopt_weight(args.LAMBDA_FEAT, global_step, threshold=args.discriminator_iter_start) loss = rec_loss + d_weight * disc_factor * adv_g_loss + \ args.LAMBDA_FEAT*feat_loss + args.LAMBDA_COM * codebook_loss return loss, rec_loss, adv_g_loss, feat_loss, d_weight def loss_dis(y_disc_r_det, y_disc_gen_det, fmap_r_det, fmap_gen_det, global_step, args): disc_factor = adopt_weight(args.LAMBDA_ADV, global_step, threshold=args.discriminator_iter_start) d_loss = disc_factor * criterion_d(y_disc_r_det, y_disc_gen_det, fmap_r_det, fmap_gen_det) return d_loss