Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- de
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# 🛡️ MLP Cybersecurity Classifier
|
| 9 |
+
|
| 10 |
+
This repository hosts a lightweight `scikit-learn`-based MLP classifier trained to distinguish cybersecurity-related content from other text, using sentence-transformer embeddings. It supports English and German input texts.
|
| 11 |
+
|
| 12 |
+
## 📦 Model Details
|
| 13 |
+
|
| 14 |
+
- **Architecture**: `MLPClassifier` with hidden layers `(128, 64)`
|
| 15 |
+
- **Embedding model**: [`intfloat/multilingual-e5-large`](https://huggingface.co/intfloat/multilingual-e5-large)
|
| 16 |
+
- **Input**: Cleaned article (removed stopwords) or report text
|
| 17 |
+
- **Output**: Binary label (e.g., `Cybersecurity`, `Not Cybersecurity`)
|
| 18 |
+
- **Languages**: English, German
|
| 19 |
+
|
| 20 |
+
## 🔧 Usage
|
| 21 |
+
|
| 22 |
+
```python
|
| 23 |
+
from sentence_transformers import SentenceTransformer
|
| 24 |
+
from sklearn.model_selection import train_test_split
|
| 25 |
+
from sklearn.preprocessing import LabelEncoder
|
| 26 |
+
import pandas as pd
|
| 27 |
+
import joblib
|
| 28 |
+
from huggingface_hub import hf_hub_download
|
| 29 |
+
|
| 30 |
+
# Load your cleaned dataset
|
| 31 |
+
df = pd.read_csv("your_dataset.csv") # Requires 'clean_text' and 'label' columns
|
| 32 |
+
|
| 33 |
+
# Load the sentence transformer
|
| 34 |
+
embedder = SentenceTransformer("intfloat/multilingual-e5-large")
|
| 35 |
+
|
| 36 |
+
# Train-test split
|
| 37 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 38 |
+
df["clean_text"],
|
| 39 |
+
df["label"],
|
| 40 |
+
test_size=0.05,
|
| 41 |
+
stratify=df["label"],
|
| 42 |
+
random_state=42
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Encode labels
|
| 46 |
+
label_encoder = LabelEncoder()
|
| 47 |
+
y_train_enc = label_encoder.fit_transform(y_train)
|
| 48 |
+
y_test_enc = label_encoder.transform(y_test)
|
| 49 |
+
|
| 50 |
+
# Generate sentence embeddings
|
| 51 |
+
X_train_emb = embedder.encode(X_train.tolist(), convert_to_numpy=True, show_progress_bar=True)
|
| 52 |
+
X_test_emb = embedder.encode(X_test.tolist(), convert_to_numpy=True, show_progress_bar=True)
|
| 53 |
+
|
| 54 |
+
# Load the trained classifier
|
| 55 |
+
model_path = hf_hub_download(repo_id="your-selfconstruct3d/cybersec-classifier", filename="cybersec_classifier.pkl")
|
| 56 |
+
model = joblib.load(model_path)
|
| 57 |
+
|
| 58 |
+
# Predict
|
| 59 |
+
y_pred = model.predict(X_test_emb)
|