tomaarsen HF Staff commited on
Commit
b30edbd
·
verified ·
1 Parent(s): d0122d6

Create train_script.py

Browse files
Files changed (1) hide show
  1. train_script.py +95 -0
train_script.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from datasets import load_dataset, Dataset
3
+ from sentence_transformers import (
4
+ SentenceTransformer,
5
+ SentenceTransformerTrainer,
6
+ SentenceTransformerTrainingArguments,
7
+ SentenceTransformerModelCardData,
8
+ )
9
+ from sentence_transformers.losses import MultipleNegativesRankingLoss
10
+ from sentence_transformers.training_args import BatchSamplers
11
+ from sentence_transformers.evaluation import NanoBEIREvaluator
12
+ from peft import LoraConfig, TaskType
13
+
14
+ logging.basicConfig(
15
+ format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
16
+ )
17
+
18
+ # 1. Load a model to finetune with 2. (Optional) model card data
19
+ model = SentenceTransformer(
20
+ "sentence-transformers-testing/stsb-bert-tiny-safetensors",
21
+ model_card_data=SentenceTransformerModelCardData(
22
+ language="en",
23
+ license="apache-2.0",
24
+ model_name="stsb-bert-tiny adapter finetuned on GooAQ pairs",
25
+ ),
26
+ )
27
+
28
+ # Apply PEFT with PromptTuningConfig
29
+ peft_config = LoraConfig(
30
+ task_type=TaskType.FEATURE_EXTRACTION,
31
+ inference_mode=False,
32
+ r=8,
33
+ lora_alpha=32,
34
+ lora_dropout=0.1,
35
+ )
36
+ model.add_adapter(peft_config, "dense")
37
+
38
+ # 3. Load a dataset to finetune on
39
+ dataset = load_dataset("sentence-transformers/gooaq", split="train")
40
+ dataset_dict = dataset.train_test_split(test_size=10_000, seed=12)
41
+ train_dataset: Dataset = dataset_dict["train"].select(range(1_000_000))
42
+ eval_dataset: Dataset = dataset_dict["test"]
43
+
44
+ # 4. Define a loss function
45
+ loss = MultipleNegativesRankingLoss(model)
46
+
47
+ # 5. (Optional) Specify training arguments
48
+ run_name = "stsb-bert-tiny-base-gooaq-peft"
49
+ args = SentenceTransformerTrainingArguments(
50
+ # Required parameter:
51
+ output_dir=f"models/{run_name}",
52
+ # Optional training parameters:
53
+ num_train_epochs=1,
54
+ per_device_train_batch_size=1024,
55
+ per_device_eval_batch_size=1024,
56
+ learning_rate=2e-5,
57
+ warmup_ratio=0.1,
58
+ fp16=False, # Set to False if you get an error that your GPU can't run on FP16
59
+ bf16=True, # Set to True if you have a GPU that supports BF16
60
+ batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
61
+ # Optional tracking/debugging parameters:
62
+ eval_strategy="steps",
63
+ eval_steps=100,
64
+ save_strategy="steps",
65
+ save_steps=100,
66
+ save_total_limit=2,
67
+ logging_steps=25,
68
+ logging_first_step=True,
69
+ run_name=run_name, # Will be used in W&B if `wandb` is installed
70
+ )
71
+
72
+ # 6. (Optional) Create an evaluator & evaluate the base model
73
+ # The full corpus, but only the evaluation queries
74
+ dev_evaluator = NanoBEIREvaluator(batch_size=1024)
75
+ dev_evaluator(model)
76
+
77
+ # 7. Create a trainer & train
78
+ trainer = SentenceTransformerTrainer(
79
+ model=model,
80
+ args=args,
81
+ train_dataset=train_dataset,
82
+ eval_dataset=eval_dataset,
83
+ loss=loss,
84
+ evaluator=dev_evaluator,
85
+ )
86
+ trainer.train()
87
+
88
+ # (Optional) Evaluate the trained model on the evaluator after training
89
+ dev_evaluator(model)
90
+
91
+ # 8. Save the trained model
92
+ model.save_pretrained(f"models/{run_name}/final")
93
+
94
+ # 9. (Optional) Push it to the Hugging Face Hub
95
+ model.push_to_hub("sentence-transformers-testing/stsb-bert-tiny-lora", private=True)