|
from torch import nn
|
|
from transformers import PreTrainedModel
|
|
from transformers import PretrainedConfig
|
|
from torchvision import transforms
|
|
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
|
|
from transformers.models.auto.modeling_auto import MODEL_MAPPING
|
|
|
|
class ImageToImageConfig(PretrainedConfig):
|
|
model_type = "upscaleing"
|
|
|
|
def __init__(self, in_channels=3, out_channels=3,in_resolution=256,out_resolution=768, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.in_resolution = in_resolution
|
|
self.out_resolution = out_resolution
|
|
|
|
class ImageToImageModel(PreTrainedModel):
|
|
config_class = ImageToImageConfig
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = nn.Sequential(
|
|
nn.Conv2d(in_channels=config.in_channels, out_channels=64, kernel_size=5, padding=2),
|
|
nn.ReLU(),
|
|
nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, padding=1),
|
|
nn.ReLU(),
|
|
nn.Conv2d(in_channels=32, out_channels=3 * 3 * 3, kernel_size=3, padding=1),
|
|
nn.PixelShuffle(3)
|
|
)
|
|
self.transform1 = transforms.Compose(
|
|
transforms=(
|
|
transforms.Resize((config.in_resolution,config.in_resolution)),
|
|
transforms.ToTensor()
|
|
)
|
|
)
|
|
self.transform2 = transforms.Compose(
|
|
transforms=(
|
|
transforms.ToPILImage(),
|
|
transforms.Resize((config.out_resolution,config.out_resolution))
|
|
)
|
|
)
|
|
|
|
def forward(self, image):
|
|
x = self.transform1(image)
|
|
x = self.model(x)
|
|
x = self.transform2(x)
|
|
return x
|
|
|
|
CONFIG_MAPPING.register("upscaleing", ImageToImageConfig)
|
|
MODEL_MAPPING.register(ImageToImageConfig, ImageToImageModel)
|
|
|
|
config = ImageToImageConfig()
|
|
model = ImageToImageModel(config)
|
|
model.save_pretrained("AIupscaleing")
|
|
|