sagarshf commited on
Commit
591e9d6
·
verified ·
1 Parent(s): ec4ba34

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -165
README.md CHANGED
@@ -1,201 +1,104 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
 
 
 
 
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
200
 
 
 
 
 
201
 
 
 
1
  ---
2
+ datasets:
3
+ - smallstepai/culturaX
4
+ language:
5
+ - mr
6
+ metrics:
7
+ - accuracy
8
+ tags:
9
+ - marathi
10
+ - sentiment analysis
11
+ - reading comprehension
12
+ - paraphrasing
13
+ - translation
14
+
15
  library_name: transformers
16
+ pipeline_tag: text-generation
17
  ---
18
 
19
+ # Misal-7B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ [smallstep.ai](https://www.linkedin.com/company/smallstepai/about/)
22
 
23
+ ## What have we built?
24
 
25
+ Misal 7B, a pretrained and instruction tuned large language model based on Meta’s Llama 7B architecture exclusively for Marathi.
26
 
27
+ ## How we built it?
28
 
29
+ Detailed blog [here](https://smallstep.ai/making-misal).
30
 
31
+ ## Benchmarking :
 
 
 
 
32
 
33
+ We did a manual round of evaluations using internet data (we have released the evaluation data here). This is a fairly small dataset with 100 questions taken from the internet. We understand that a better evaluation method is needed to benchmark our model, this being the first iteration we decided to proceed with manual evaluation.
34
 
35
+ Our main aim was to see if the model understands basic instructions, if so how well is it able to understand it, hence we have limited our evaluation to Reading comprehension, Translation, Sentiment Analysis, Paraphrasing like tasks.
36
 
37
+ [Manual Evaluation Set ](https://huggingface.co/datasets/smallstepai/Misal-Evaluation-v0.1)
38
 
39
+ | | Misal | ChatGPT3.5 | Krutrim | MahaMarathi |
40
+ | --------------------- | ----- | ---------- | ------- | ----------- |
41
+ | reading comprehension | 88 | 68 | 40 | 0 |
42
+ | sentiment analysis | 68 | 76 | 60 | 0 |
43
+ | paraphrase | 92 | 100 | 88 | 0 |
44
+ | translation | 76 | 96 | 80 | 0 |
45
+ | average | 81 | 85 | 67 | 0 |
46
 
47
+ ## Summary :
48
 
49
+ Our model beats ChatGPT 3.5 at reading comprehension.
50
 
51
+ While we are not able to beat ChatGPT 3.5 on remaining tasks like sentiment analysis, paraphrasing, translation, our model beats Ola Krutrim at all the tasks except translation.
52
 
53
+ ![image/png](https://framerusercontent.com/images/BB9D44882aH8mL5Pf9Ps4lc.jpeg)
54
 
55
+ ## License
56
 
57
+ The model inherits the license from meta-llama/Llama-2-7b.
58
 
59
+ ## Usage
60
 
61
+ ### Installation
62
 
63
+ ```bash
64
+ pip install transformers accelerate
65
+ ```
66
 
67
+ ### Prompt
68
 
69
+ ```python
70
+ आपण एक मदतगार, आदरणीय आणि प्रामाणिक सहाय्यक आहात.नेहमी शक्य तितकी उपयुक्त उत्तर द्या. तुमची उत्तरे हानिकारक, अनैतिक, वर्णद्वेषी, लैंगिकतावादी, हानिकारक, धोकादायक किंवा बेकायदेशीर नसावीत. कृपया खात्री करा की तुमची उत्तरे सामाजिक दृष्टिकोनाने निष्पक्ष आणि सकारात्मक स्वरूपाची आहेत. जर एखाद्या प्रश्नाला काही अर्थ नसेल किंवा वस्तुस्थितीशी सुसंगती नसेल, तर उत्तर देण्याऐवजी काहीतरी बरोबर का नाही हे स्पष्ट करा. तुम्हाला एखाद्या प्रश्नाचे उत्तर माहित नसल्यास, कृपया चुकीची माहिती देऊ नये.
71
 
72
+ ### Instruction:
73
 
74
+ <instruction>
75
 
76
+ ### Input:
77
 
78
+ <input data>
79
 
80
+ ### Response:
81
+ ```
82
 
83
+ ### PyTorch
84
 
85
+ ```python
86
+ from transformers import AutoModelForCausalLM, AutoTokenizer
87
+ device = "cuda"
88
+ model = AutoModelForCausalLM.from_pretrained("smallstepai/Misal-7B-instruct-v0.1", torch_dtype=torch.bfloat16, device_map='auto')
89
+ tokenizer = AutoTokenizer.from_pretrained("smallstepai/Misal-7B-instruct-v0.1")
90
 
91
+ def ask_misal(model, tokenizer, instruction, inputs='', system_prompt='', max_new_tokens=200, device='cuda'):
92
 
93
+ ip = dict(system_prompt=system_prompt, instruction=instruction, inputs=inputs)
94
+ model_inputs = tokenizer.apply_chat_template(ip, return_tensors='pt')
95
+ outputs = model.generate(model_inputs.to(device), max_new_tokens=max_new_tokens)
96
+ response = tokenizer.decode(outputs[0]).split('### Response:')[1].strip()
97
+ return response
98
 
99
+ instruction="सादरीकरण कसे करावे?"
100
+ resp = ask_misal(model, tokenizer, instruction=instruction, max_new_tokens=1024)
101
+ print(resp)
102
+ ```
103
 
104
+ ### Team