File size: 2,144 Bytes
c57e2e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: transformers
license: apache-2.0
base_model: Salesforce/codet5-small
tags:
- generated_from_trainer
datasets:
- code_search_net
metrics:
- bleu
model-index:
- name: code_docstring_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: code_search_net
type: code_search_net
config: python
split: validation
args: python
metrics:
- name: Bleu
type: bleu
value: 0.2549466345587089
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# code_docstring_model
This model is a fine-tuned version of [Salesforce/codet5-small](https://huggingface.co/Salesforce/codet5-small) on the code_search_net dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0648
- Bleu: 0.2549
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.3285 | 0.9993 | 1076 | 1.1621 | 0.1967 |
| 1.1877 | 1.9993 | 2152 | 1.1024 | 0.2612 |
| 1.1597 | 2.9993 | 3228 | 1.0783 | 0.2552 |
| 1.1454 | 3.9993 | 4304 | 1.0680 | 0.2575 |
| 1.1309 | 4.9993 | 5380 | 1.0648 | 0.2549 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
|