Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,22 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
|
| 3 |
|
| 4 |
+
tokenizer = AutoTokenizer.from_pretrained("MahmoudH/t5-v1_1-base-finetuned-sci_summ")
|
| 5 |
+
model = TFAutoModelForSeq2SeqLM.from_pretrained("MahmoudH/t5-v1_1-base-finetuned-sci_summ")
|
| 6 |
+
|
| 7 |
+
def predict(text):
|
| 8 |
+
tokenized_inputs = tokenizer([text])
|
| 9 |
+
output = model.generate(
|
| 10 |
+
input_ids=tokenized_inputs["input_ids"],
|
| 11 |
+
attention_mask=tokenized_inputs["attention_mask"],
|
| 12 |
+
max_new_tokens=256,
|
| 13 |
+
num_beams=2,
|
| 14 |
+
do_sample=True
|
| 15 |
+
)
|
| 16 |
+
summary = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 17 |
+
return summary
|
| 18 |
+
|
| 19 |
+
input_box = gr.Textbox(label="Input")
|
| 20 |
+
output_box = gr.Textbox(label="Summary")
|
| 21 |
+
|
| 22 |
+
gr.Interface(fn=predict, inputs=input_box, outputs=output_box).launch()
|