Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModel, AutoTokenizer
|
|
|
|
| 3 |
|
| 4 |
# Load a small CPU model for text to vector processing
|
| 5 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
|
@@ -7,15 +8,11 @@ model = AutoModel.from_pretrained(model_name)
|
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
|
| 9 |
def text_to_vector(text):
|
| 10 |
-
"""
|
| 11 |
-
Converts text to a vector representation using a pre-trained model.
|
| 12 |
-
"""
|
| 13 |
inputs = tokenizer(text, return_tensors="pt")
|
| 14 |
outputs = model(**inputs)
|
| 15 |
vector = outputs.pooler_output.detach().numpy()[0]
|
| 16 |
-
# Convert
|
| 17 |
-
|
| 18 |
-
return vector_str
|
| 19 |
|
| 20 |
demo = gr.Interface(
|
| 21 |
fn=text_to_vector,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModel, AutoTokenizer
|
| 3 |
+
import numpy as np
|
| 4 |
|
| 5 |
# Load a small CPU model for text to vector processing
|
| 6 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
|
|
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
|
| 10 |
def text_to_vector(text):
|
|
|
|
|
|
|
|
|
|
| 11 |
inputs = tokenizer(text, return_tensors="pt")
|
| 12 |
outputs = model(**inputs)
|
| 13 |
vector = outputs.pooler_output.detach().numpy()[0]
|
| 14 |
+
# Convert to a string representation for display
|
| 15 |
+
return ", ".join(map(str, vector))
|
|
|
|
| 16 |
|
| 17 |
demo = gr.Interface(
|
| 18 |
fn=text_to_vector,
|