File size: 3,492 Bytes
67cda68
 
 
 
 
 
 
 
 
 
 
 
 
513edc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
title: Fraud Detection
emoji: 🌍
colorFrom: green
colorTo: purple
sdk: gradio
sdk_version: 5.42.0
app_file: app.py
pinned: false
license: apache-2.0
short_description: Financial transactions fraud detection.
---

# πŸ”’ Credit Card Fraud Detection System

**Instantly detect fraudulent transactions with AI-powered risk assessment**

This system uses an **XGBoost machine learning model** to analyse credit card transactions and predict fraud risk in real-time. Simply enter transaction details and get an immediate risk assessment.

## πŸš€ Quick Start

1. **Single Transaction**: Enter transaction details β†’ Get instant fraud probability
2. **Batch Processing**: Upload CSV file β†’ Process multiple transactions at once
3. **Risk Assessment**: Receive colour-coded risk levels with clear recommendations

## 🎯 How It Works

The AI model analyses **40+ transaction features** including:
- Transaction amount and timing
- Card details and type
- Email domain patterns
- Geographic information
- User behaviour history

## πŸ“Š Risk Levels Explained

| Risk Level | Probability | What It Means | Action Required |
|------------|-------------|---------------|-----------------|
| πŸ”΄ **High Risk** | β‰₯80% | Very likely fraud | Block transaction immediately |
| 🟑 **Medium Risk** | 50-79% | Suspicious activity | Manual review needed |
| 🟠 **Low Risk** | 20-49% | Some concerns | Monitor closely |
| 🟒 **Very Low Risk** | <20% | Normal transaction | Process as usual |

## πŸ’‘ Example Use Cases

- **Banks**: Screen transactions before processing
- **E-commerce**: Protect against fraudulent purchases  
- **Fintech**: Real-time fraud monitoring
- **Research**: Analyse transaction patterns

## πŸ› οΈ Features

βœ… **Real-time predictions** - Results in under 1 second  
βœ… **High accuracy** - Trained on large transaction dataset  
βœ… **Easy to use** - Simple web interface, no coding required  
βœ… **Batch processing** - Handle multiple transactions at once  
βœ… **Professional insights** - Clear risk levels and recommendations  

## πŸ“ˆ Model Performance

- **Algorithm**: XGBoost (Extreme Gradient Boosting)
- **Training Data**: Thousands of real transaction records
- **Accuracy**: High precision with low false positives
- **Speed**: Real-time inference (<100ms per prediction)

## πŸ”§ How to Use

### For Single Transactions:
1. Fill in the transaction form
2. Click "Analyse Transaction"
3. View risk assessment and follow recommendations

### For Multiple Transactions:
1. Prepare CSV file with transaction data
2. Upload file in "Batch Processing" tab
3. Download results with fraud probabilities

## πŸ“ CSV Format for Batch Processing

Your CSV should include columns like:
```
TransactionAmt, card4, P_emaildomain, addr1, addr2, card1, card2, etc.
```

## ⚑ Try It Now

No setup required - just enter your transaction details and get instant results!

## πŸ›‘οΈ Important Notes

- This is a **demonstration system** for educational purposes
- For production use, implement proper security measures
- Always combine AI predictions with human expertise
- Follow your organisation's fraud prevention policies

## πŸ”¬ Technical Details

The model uses advanced feature engineering including:
- Logarithmic transformations
- Time-based features
- Interaction variables
- Categorical encoding
- Missing value handling

Built with Python, scikit-learn, XGBoost, and Gradio.

---

**Ready to detect fraud?** Start by entering a transaction above! πŸ‘†