File size: 4,688 Bytes
0f6be34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3ad81
0f6be34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3ad81
 
0f6be34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de49b6b
 
 
0f6be34
 
 
 
 
de49b6b
0f6be34
de49b6b
 
 
0f6be34
de49b6b
 
 
 
 
 
0f6be34
 
 
de49b6b
 
0f6be34
de49b6b
 
 
 
0f6be34
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain_community.retrievers import BM25Retriever
from smolagents import DuckDuckGoSearchTool
from smolagents import Tool
from langchain.vectorstores import FAISS
import faiss
from langchain_community.docstore.in_memory import InMemoryDocstore

# Load environment variables
load_dotenv()

class QuestionRetrieverTool(Tool):
    name="Question Search",
    description="Retrieve similar questions from the vector store."
    inputs = {
        "query": {
            "type": "string",
            "description": "The question you want relation about."
        }
    }
    output_type = "string"

    def __init__(self, docs):
        self.is_initialized = False
        self.retriever = BM25Retriever.from_documents(docs)

    def forward(self, query: str):
        results = self.retriever.get_relevant_documents(query)
        if results:
            return "\n\n".join([doc.page_content for doc in results[:3]])
        else:
            return "No matching Questions found."


@tool
def wiki_search(query: str) -> dict:
    """Search Wikipedia and return up to 2 documents."""
    docs = WikipediaLoader(query=query, load_max_docs=2).load()
    results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs]
    return {"wiki_results": "\n---\n".join(results)}

@tool
def web_search(query: str) -> dict:
    """Search DDG and return up to 3 results."""
    docs = DuckDuckGoSearchTool(max_results=3).invoke(query=query)
    results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs]
    return {"web_results": "\n---\n".join(results)}


# --- Load system prompt ---
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)

# --- Retriever Tool ---
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
embedding_dim = 768  # for 'all-mpnet-base-v2'
empty_index = faiss.IndexFlatL2(embedding_dim)
docstore = InMemoryDocstore({})
vector_store = FAISS(embedding_function=embeddings, index=empty_index, docstore=docstore, index_to_docstore_id={})


retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="Retrieve similar questions from the vector store."
)

tools = [
    wiki_search,
    web_search,
    retriever_tool,
]

# --- Graph Builder ---
def build_graph():
    llm = ChatHuggingFace(
        llm=HuggingFaceEndpoint(
            repo_id="meta-llama/Llama-2-7b-chat-hf",
            temperature=0,
            huggingfacehub_api_token=os.getenv("HF_TOKEN") 
        )
    )

    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # Define nodes
    def assistant(state: MessagesState):
        return {"messages": [llm_with_tools.invoke(state["messages"])]}



    # Retriever node returns AIMessage
    def retriever(state: MessagesState):
        query = state["messages"][-1].content
        similar_docs = vector_store.similarity_search(query, k=1)

        if similar_docs:
            reference = similar_docs[0].page_content
            context_msg = HumanMessage(content=f"Here is a similar question and answer for reference:\n\n{reference}")
        else:
            context_msg = HumanMessage(content="No relevant example found.")

        return {
            "messages": [sys_msg] + state["messages"] + [context_msg]
        }


    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))

    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()