import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, AIMessage, HumanMessage from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool from langchain_community.retrievers import BM25Retriever from smolagents import DuckDuckGoSearchTool from smolagents import Tool from langchain.vectorstores import FAISS import faiss # Load environment variables load_dotenv() class QuestionRetrieverTool(Tool): name="Question Search", description="Retrieve similar questions from the vector store." inputs = { "query": { "type": "string", "description": "The question you want relation about." } } output_type = "string" def __init__(self, docs): self.is_initialized = False self.retriever = BM25Retriever.from_documents(docs) def forward(self, query: str): results = self.retriever.get_relevant_documents(query) if results: return "\n\n".join([doc.page_content for doc in results[:3]]) else: return "No matching Questions found." @tool def wiki_search(query: str) -> dict: """Search Wikipedia and return up to 2 documents.""" docs = WikipediaLoader(query=query, load_max_docs=2).load() results = [f"\n{d.page_content}" for d in docs] return {"wiki_results": "\n---\n".join(results)} @tool def web_search(query: str) -> dict: """Search DDG and return up to 3 results.""" docs = DuckDuckGoSearchTool(max_results=3).invoke(query=query) results = [f"\n{d.page_content}" for d in docs] return {"web_results": "\n---\n".join(results)} # --- Load system prompt --- with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) # --- Retriever Tool --- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") embedding_dim = 768 # for 'all-mpnet-base-v2' empty_index = faiss.IndexFlatL2(embedding_dim) vector_store = FAISS(embedding_function=embeddings, index=empty_index, docstore={}, index_to_docstore_id={}) retriever_tool = create_retriever_tool( retriever=vector_store.as_retriever(), name="Question Search", description="Retrieve similar questions from the vector store." ) tools = [ wiki_search, web_search, retriever_tool, ] # --- Graph Builder --- def build_graph(): llm = ChatHuggingFace( llm=HuggingFaceEndpoint( repo_id="meta-llama/Llama-2-7b-chat-hf", temperature=0, huggingfacehub_api_token=os.getenv("HF_TOKEN") ) ) # Bind tools to LLM llm_with_tools = llm.bind_tools(tools) # Define nodes def assistant_node(state: MessagesState) -> dict: # Append system message for context messages = [sys_msg] + state["messages"] response = llm_with_tools.invoke(messages) return {"messages": [response]} # Retriever node returns AIMessage def retriever(state: MessagesState): query = state["messages"][-1].content similar_doc = vector_store.similarity_search(query, k=1)[0] content = similar_doc.page_content if "Final answer :" in content: answer = content.split("Final answer :")[-1].strip() else: answer = content.strip() return {"messages": [AIMessage(content=answer)]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.set_entry_point("retriever") builder.set_finish_point("retriever") # Compile graph return builder.compile()