Spaces:
Sleeping
Sleeping
File size: 8,287 Bytes
06bc80f ef09716 06bc80f ef09716 06bc80f ef09716 06bc80f ef09716 06bc80f ef09716 06bc80f ef09716 06bc80f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import codecs
import os
import re
from datetime import datetime
from importlib.resources import files
from pathlib import Path
import numpy as np
import soundfile as sf
import tomli
from cached_path import cached_path
from hydra.utils import get_class
from omegaconf import OmegaConf
from f5_tts.infer.utils_infer import (
mel_spec_type,
target_rms,
cross_fade_duration,
nfe_step,
cfg_strength,
sway_sampling_coef,
speed,
fix_duration,
device,
infer_process,
load_model,
load_vocoder,
preprocess_ref_audio_text,
remove_silence_for_generated_wav,
)
# ββ USER CONFIG ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
config_path = "infer/examples/basic/basic.toml"
model = "F5TTS_v1_Base"
model_cfg_path = None # e.g. "path/to/your/model.yaml", or leave None to use default from config
ckpt_file = "" # leave blank to pull from HF cache
vocab_file = "" # leave blank to use default
ref_audio = "data/15sec.wav"
ref_text = (
"Fuck your phone. Stop texting all the time. "
"Look up from your phone and breathe. Release yourself."
)
gen_text = (
"I am not feeling it. This is it. There is no reconceptualizing."
)
gen_file = "" # if set, will override gen_text by loading from this file
output_dir = "tests"
output_file = f"infer_cli_{datetime.now():%Y%m%d_%H%M%S}.wav"
save_chunk = False
remove_silence = False
load_vocoder_from_local = False
vocoder_name = None # "vocos" or "bigvgan" or None to use default from config
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# load config
config = tomli.load(open(config_path, "rb"))
# resolve parameters (fall back to config defaults where applicable)
model_cfg_path = model_cfg_path or config.get("model_cfg", None)
ckpt_file = ckpt_file or config.get("ckpt_file", "")
vocab_file = vocab_file or config.get("vocab_file", "")
gen_file = gen_file or config.get("gen_file", "")
save_chunk = save_chunk or config.get("save_chunk", False)
remove_silence = remove_silence or config.get("remove_silence", False)
load_vocoder_from_local = load_vocoder_from_local or config.get("load_vocoder_from_local", False)
vocoder_name = vocoder_name or config.get("vocoder_name", mel_spec_type)
target_rms = config.get("target_rms", target_rms)
cross_fade_duration = config.get("cross_fade_duration", cross_fade_duration)
nfe_step = config.get("nfe_step", nfe_step)
cfg_strength = config.get("cfg_strength", cfg_strength)
sway_sampling_coef = config.get("sway_sampling_coef", sway_sampling_coef)
speed = config.get("speed", speed)
fix_duration = config.get("fix_duration", fix_duration)
device = config.get("device", device)
# if user pointed at example paths inside the package, fix them
if "infer/examples/" in ref_audio:
ref_audio = str(files("f5_tts").joinpath(ref_audio))
if gen_file and "infer/examples/" in gen_file:
gen_file = str(files("f5_tts").joinpath(gen_file))
if "voices" in config:
for v in config["voices"].values():
if "infer/examples/" in v.get("ref_audio", ""):
v["ref_audio"] = str(files("f5_tts").joinpath(v["ref_audio"]))
# if using a gen_file, load its text
if gen_file:
gen_text = codecs.open(gen_file, "r", "utf-8").read()
# prepare output paths
wave_path = Path(output_dir) / output_file
if save_chunk:
chunk_dir = Path(output_dir) / f"{wave_path.stem}_chunks"
chunk_dir.mkdir(parents=True, exist_ok=True)
# load vocoder
if vocoder_name == "vocos":
vocoder_local_path = "../checkpoints/vocos-mel-24khz"
elif vocoder_name == "bigvgan":
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
else:
vocoder_local_path = None
vocoder = load_vocoder(
vocoder_name=vocoder_name,
is_local=load_vocoder_from_local,
local_path=vocoder_local_path,
device=device,
)
# load TTS model
model_cfg = OmegaConf.load(
model_cfg_path
or str(files("f5_tts").joinpath(f"configs/{model}.yaml"))
)
ModelClass = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
repo_name, ckpt_step, ckpt_type = "F5-TTS", 1250000, "safetensors"
if model == "F5TTS_Base":
if vocoder_name == "vocos":
ckpt_step = 1200000
else:
model = "F5TTS_Base_bigvgan"
ckpt_type = "pt"
elif model == "E2TTS_Base":
repo_name, ckpt_step = "E2-TTS", 1200000
if not ckpt_file:
ckpt_file = str(
cached_path(f"hf://SWivid/{repo_name}/{model}/model_{ckpt_step}.{ckpt_type}")
)
print(f"Loading model {model} checkpointβ¦")
ema_model = load_model(
ModelClass,
model_cfg.model.arch,
ckpt_file,
mel_spec_type=vocoder_name,
vocab_file=vocab_file,
device=device,
)
def generate_tts(input_text, output_dir="tests", output_file=None, ref_audio=ref_audio, ref_text=None):
"""
Generate text-to-speech audio from input text.
Args:
input_text (str): Text to convert to speech
output_dir (str): Directory to save the output file (default: "tests")
output_file (str): Output filename (default: auto-generated based on timestamp)
ref_audio (str): Reference audio file (default: "15sec.wav")
ref_text (str): Reference text (default: predefined text)
Returns:
str: Path to the generated audio file
"""
if ref_text is None:
ref_text = (
"Fuck your phone. Stop texting all the time. "
"Look up from your phone and breathe. Release yourself."
)
gen_text = input_text
if output_file is None:
output_file = f"infer_cli_{datetime.now():%Y%m%d_%H%M%S}.wav"
# assemble voices dict
main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
voices = {"main": main_voice}
if "voices" in config:
voices.update(config["voices"])
voices["main"] = main_voice
# preprocess all references
for name, v in voices.items():
v["ref_audio"], v["ref_text"] = preprocess_ref_audio_text(
v["ref_audio"], v["ref_text"]
)
# break text into perβvoice chunks
reg1 = r"(?=\[\w+\])"
reg2 = r"\[(\w+)\]"
chunks = re.split(reg1, gen_text)
segments = []
for chunk in chunks:
txt = chunk.strip()
if not txt:
continue
m = re.match(reg2, txt)
if m:
voice = m.group(1)
txt = re.sub(reg2, "", txt).strip()
else:
voice = "main"
if voice not in voices:
print(f"Unknown voice '{voice}', using main.")
voice = "main"
seg, sr, _ = infer_process(
voices[voice]["ref_audio"],
voices[voice]["ref_text"],
txt,
ema_model,
vocoder,
mel_spec_type=vocoder_name,
target_rms=target_rms,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
speed=speed,
fix_duration=fix_duration,
device=device,
)
segments.append(seg)
if save_chunk:
name = txt[:200].replace(" ", "_")
sf.write(str(chunk_dir / f"{len(segments)-1}_{name}.wav"), seg, sr)
# concatenate and write
final = np.concatenate(segments) if segments else np.array([], dtype=np.float32)
os.makedirs(output_dir, exist_ok=True)
wave_path = Path(output_dir) / output_file
sf.write(str(wave_path), final, sr)
if remove_silence:
remove_silence_for_generated_wav(str(wave_path))
print(f"Written output to {wave_path}")
return str(wave_path)
if __name__ == "__main__":
test_text = "This is a test of the TTS system."
generated_file = generate_tts(test_text)
print(f"Generated file: {generated_file}")
|