Spaces:
Runtime error
Runtime error
Commit
·
a898014
1
Parent(s):
2e7f188
fix
Browse files
app.py
CHANGED
|
@@ -17,9 +17,10 @@ from trellis.utils import render_utils, postprocessing_utils
|
|
| 17 |
|
| 18 |
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
-
def preprocess_image(image: Image.Image) -> Tuple[
|
| 23 |
"""
|
| 24 |
Preprocess the input image.
|
| 25 |
|
|
@@ -27,14 +28,16 @@ def preprocess_image(image: Image.Image) -> Tuple[dict, Image.Image]:
|
|
| 27 |
image (Image.Image): The input image.
|
| 28 |
|
| 29 |
Returns:
|
| 30 |
-
|
| 31 |
Image.Image: The preprocessed image.
|
| 32 |
"""
|
|
|
|
| 33 |
processed_image = pipeline.preprocess_image(image)
|
| 34 |
-
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
-
def pack_state(gs: Gaussian, mesh: MeshExtractResult,
|
| 38 |
return {
|
| 39 |
'gaussian': {
|
| 40 |
**gs.init_params,
|
|
@@ -48,7 +51,7 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult, model_id: str) -> dict:
|
|
| 48 |
'vertices': mesh.vertices.cpu().numpy(),
|
| 49 |
'faces': mesh.faces.cpu().numpy(),
|
| 50 |
},
|
| 51 |
-
'
|
| 52 |
}
|
| 53 |
|
| 54 |
|
|
@@ -72,16 +75,16 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
| 72 |
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
| 73 |
)
|
| 74 |
|
| 75 |
-
return gs, mesh, state['
|
| 76 |
|
| 77 |
|
| 78 |
@spaces.GPU
|
| 79 |
-
def image_to_3d(
|
| 80 |
"""
|
| 81 |
Convert an image to a 3D model.
|
| 82 |
|
| 83 |
Args:
|
| 84 |
-
|
| 85 |
seed (int): The random seed.
|
| 86 |
randomize_seed (bool): Whether to randomize the seed.
|
| 87 |
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
|
@@ -96,7 +99,7 @@ def image_to_3d(image: dict, seed: int, randomize_seed: bool, ss_guidance_streng
|
|
| 96 |
if randomize_seed:
|
| 97 |
seed = np.random.randint(0, MAX_SEED)
|
| 98 |
outputs = pipeline.run(
|
| 99 |
-
Image.
|
| 100 |
seed=seed,
|
| 101 |
formats=["gaussian", "mesh"],
|
| 102 |
preprocess_image=False,
|
|
@@ -112,11 +115,11 @@ def image_to_3d(image: dict, seed: int, randomize_seed: bool, ss_guidance_streng
|
|
| 112 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 113 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 114 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 115 |
-
|
| 116 |
-
video_path = f"/
|
| 117 |
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
| 118 |
imageio.mimsave(video_path, video, fps=15)
|
| 119 |
-
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0],
|
| 120 |
return state, video_path
|
| 121 |
|
| 122 |
|
|
@@ -133,9 +136,9 @@ def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[s
|
|
| 133 |
Returns:
|
| 134 |
str: The path to the extracted GLB file.
|
| 135 |
"""
|
| 136 |
-
gs, mesh,
|
| 137 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 138 |
-
glb_path = f"/
|
| 139 |
glb.export(glb_path)
|
| 140 |
return glb_path, glb_path
|
| 141 |
|
|
@@ -184,7 +187,7 @@ with gr.Blocks() as demo:
|
|
| 184 |
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
|
| 185 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 186 |
|
| 187 |
-
|
| 188 |
output_buf = gr.State()
|
| 189 |
|
| 190 |
# Example images at the bottom of the page
|
|
@@ -196,7 +199,7 @@ with gr.Blocks() as demo:
|
|
| 196 |
],
|
| 197 |
inputs=[image_prompt],
|
| 198 |
fn=preprocess_image,
|
| 199 |
-
outputs=[
|
| 200 |
run_on_click=True,
|
| 201 |
examples_per_page=64,
|
| 202 |
)
|
|
@@ -205,12 +208,16 @@ with gr.Blocks() as demo:
|
|
| 205 |
image_prompt.upload(
|
| 206 |
preprocess_image,
|
| 207 |
inputs=[image_prompt],
|
| 208 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
)
|
| 210 |
|
| 211 |
generate_btn.click(
|
| 212 |
image_to_3d,
|
| 213 |
-
inputs=[
|
| 214 |
outputs=[output_buf, video_output],
|
| 215 |
).then(
|
| 216 |
activate_button,
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
+
TMP_DIR = "/tmp/Trellis-demo"
|
| 21 |
|
| 22 |
|
| 23 |
+
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
| 24 |
"""
|
| 25 |
Preprocess the input image.
|
| 26 |
|
|
|
|
| 28 |
image (Image.Image): The input image.
|
| 29 |
|
| 30 |
Returns:
|
| 31 |
+
str: uuid of the trial.
|
| 32 |
Image.Image: The preprocessed image.
|
| 33 |
"""
|
| 34 |
+
trial_id = str(uuid.uuid4())
|
| 35 |
processed_image = pipeline.preprocess_image(image)
|
| 36 |
+
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
|
| 37 |
+
return trial_id, processed_image
|
| 38 |
|
| 39 |
|
| 40 |
+
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
| 41 |
return {
|
| 42 |
'gaussian': {
|
| 43 |
**gs.init_params,
|
|
|
|
| 51 |
'vertices': mesh.vertices.cpu().numpy(),
|
| 52 |
'faces': mesh.faces.cpu().numpy(),
|
| 53 |
},
|
| 54 |
+
'trial_id': trial_id,
|
| 55 |
}
|
| 56 |
|
| 57 |
|
|
|
|
| 75 |
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
| 76 |
)
|
| 77 |
|
| 78 |
+
return gs, mesh, state['trial_id']
|
| 79 |
|
| 80 |
|
| 81 |
@spaces.GPU
|
| 82 |
+
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
|
| 83 |
"""
|
| 84 |
Convert an image to a 3D model.
|
| 85 |
|
| 86 |
Args:
|
| 87 |
+
trial_id (str): The uuid of the trial.
|
| 88 |
seed (int): The random seed.
|
| 89 |
randomize_seed (bool): Whether to randomize the seed.
|
| 90 |
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
|
|
|
| 99 |
if randomize_seed:
|
| 100 |
seed = np.random.randint(0, MAX_SEED)
|
| 101 |
outputs = pipeline.run(
|
| 102 |
+
Image.open(f"{TMP_DIR}/{trial_id}.png"),
|
| 103 |
seed=seed,
|
| 104 |
formats=["gaussian", "mesh"],
|
| 105 |
preprocess_image=False,
|
|
|
|
| 115 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 116 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 117 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 118 |
+
trial_id = uuid.uuid4()
|
| 119 |
+
video_path = f"{TMP_DIR}/{trial_id}.mp4"
|
| 120 |
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
| 121 |
imageio.mimsave(video_path, video, fps=15)
|
| 122 |
+
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
| 123 |
return state, video_path
|
| 124 |
|
| 125 |
|
|
|
|
| 136 |
Returns:
|
| 137 |
str: The path to the extracted GLB file.
|
| 138 |
"""
|
| 139 |
+
gs, mesh, trial_id = unpack_state(state)
|
| 140 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 141 |
+
glb_path = f"{TMP_DIR}/{trial_id}.glb"
|
| 142 |
glb.export(glb_path)
|
| 143 |
return glb_path, glb_path
|
| 144 |
|
|
|
|
| 187 |
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
|
| 188 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 189 |
|
| 190 |
+
trial_id = gr.Textbox(visible=False)
|
| 191 |
output_buf = gr.State()
|
| 192 |
|
| 193 |
# Example images at the bottom of the page
|
|
|
|
| 199 |
],
|
| 200 |
inputs=[image_prompt],
|
| 201 |
fn=preprocess_image,
|
| 202 |
+
outputs=[trial_id, image_prompt],
|
| 203 |
run_on_click=True,
|
| 204 |
examples_per_page=64,
|
| 205 |
)
|
|
|
|
| 208 |
image_prompt.upload(
|
| 209 |
preprocess_image,
|
| 210 |
inputs=[image_prompt],
|
| 211 |
+
outputs=[trial_id, image_prompt],
|
| 212 |
+
)
|
| 213 |
+
image_prompt.clear(
|
| 214 |
+
lambda: '',
|
| 215 |
+
outputs=[trial_id],
|
| 216 |
)
|
| 217 |
|
| 218 |
generate_btn.click(
|
| 219 |
image_to_3d,
|
| 220 |
+
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
| 221 |
outputs=[output_buf, video_output],
|
| 222 |
).then(
|
| 223 |
activate_button,
|