14likhit's picture
Updated app.py
5655d9c verified
raw
history blame
4.74 kB
import streamlit as st
import torch
from PIL import Image
import io
import os
import subprocess
import sys
# Set page config
st.set_page_config(
page_title="Portrait Generator",
page_icon="🖼️",
layout="centered"
)
# App title and description
st.title("AI Portrait Generator")
st.markdown("Generate beautiful portraits using the AWPortraitCN2 model")
# Check and install compatible versions if needed
@st.cache_resource
def install_dependencies():
try:
# Try to import diffusers to see if it works
import diffusers
return True
except ImportError:
st.warning("Installing required packages. This may take a few minutes...")
# Install specific versions known to work together
subprocess.check_call([
sys.executable, "-m", "pip", "install",
"huggingface-hub==0.16.4",
"diffusers==0.20.0",
"transformers==4.32.0",
"accelerate==0.21.0"
])
return True
except Exception as e:
st.error(f"Failed to install dependencies: {e}")
return False
# Try to install compatible dependencies
dependencies_installed = install_dependencies()
# If dependencies installation failed, show message and exit
if not dependencies_installed:
st.error("Could not set up the required environment. Please check the logs.")
st.stop()
# Model parameters
with st.sidebar:
st.header("Generation Settings")
steps = st.slider("Inference Steps", min_value=20, max_value=100, value=40)
guidance_scale = st.slider("Guidance Scale", min_value=1.0, max_value=15.0, value=7.5, step=0.5)
negative_prompt = st.text_area(
"Negative Prompt",
value="lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, watermark, signature, out of frame"
)
seed = st.number_input("Random Seed (leave at -1 for random)", min_value=-1, value=-1)
# Main prompt input
prompt = st.text_area(
"Describe the portrait you want to generate",
value="Masterpiece portrait of a beautiful young woman with flowing hair, detailed face, photorealistic, 8k, professional photography"
)
# Function to load model with proper dependencies
@st.cache_resource
def load_model():
try:
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained(
"Shakker-Labs/AWPortraitCN2",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True
)
# Move to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = pipeline.to(device)
return pipeline
except Exception as e:
st.error(f"Error loading model: {e}")
return None
# Generate button
if st.button("Generate Portrait", type="primary"):
with st.spinner("Loading model and generating portrait..."):
try:
# Load the model
pipeline = load_model()
if pipeline is None:
st.error("Failed to load the model. Please check the logs.")
st.stop()
# Set seed if specified
generator = None
if seed != -1:
device = "cuda" if torch.cuda.is_available() else "cpu"
generator = torch.Generator(device).manual_seed(seed)
# Generate the image
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator
).images[0]
# Display the generated image
st.image(image, caption="Generated Portrait", use_column_width=True)
# Option to download
buf = io.BytesIO()
image.save(buf, format="PNG")
byte_im = buf.getvalue()
st.download_button(
label="Download Portrait",
data=byte_im,
file_name="generated_portrait.png",
mime="image/png"
)
except Exception as e:
st.error(f"An error occurred: {e}")
st.info("Make sure you have enough GPU memory and the required dependencies installed.")
# Add requirements info at the bottom
st.markdown("---")
st.markdown("""
### About This App
This app uses the AWPortraitCN2 model to generate AI portraits based on your text prompts.
Adjust the settings in the sidebar to customize your generation.
""")