14likhit's picture
Updated app.py
09616bc verified
import streamlit as st
import torch
import io
import os
from PIL import Image
# Set page config
st.set_page_config(
page_title="Portrait Generator",
page_icon="🖼️",
layout="centered"
)
# App title and description
st.title("AI Portrait Generator")
st.markdown("Generate beautiful portraits using the AWPortraitCN2 model")
# Model parameters
with st.sidebar:
st.header("Generation Settings")
steps = st.slider("Inference Steps", min_value=20, max_value=100, value=40)
guidance_scale = st.slider("Guidance Scale", min_value=1.0, max_value=15.0, value=7.5, step=0.5)
negative_prompt = st.text_area(
"Negative Prompt",
value="lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, watermark, signature, out of frame"
)
seed = st.number_input("Random Seed (leave at -1 for random)", min_value=-1, value=-1)
# Main prompt input
prompt = st.text_area(
"Describe the portrait you want to generate",
value="Masterpiece portrait of a beautiful young woman with flowing hair, detailed face, photorealistic, 8k, professional photography"
)
# Function to load model using modern API
@st.cache_resource
def load_model():
try:
# Import these inside the function to handle errors gracefully
from diffusers import AutoPipelineForText2Image
# Use AutoPipeline which is more compatible with newer versions
pipeline = AutoPipelineForText2Image.from_pretrained(
"Shakker-Labs/AWPortraitCN2",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True,
variant="fp16" if torch.cuda.is_available() else None
)
# Move to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = pipeline.to(device)
return pipeline
except Exception as e:
st.error(f"Error loading model: {str(e)}")
st.info("Debug info: Using modern API with AutoPipelineForText2Image")
# Fallback to traditional StableDiffusionPipeline if needed
try:
st.info("Trying alternative method...")
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained(
"Shakker-Labs/AWPortraitCN2",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True
)
# Move to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = pipeline.to(device)
return pipeline
except Exception as e2:
st.error(f"Alternative method also failed: {str(e2)}")
return None
# Generate button
if st.button("Generate Portrait", type="primary"):
with st.spinner("Loading model and generating portrait..."):
try:
# Load the model
pipeline = load_model()
if pipeline is None:
st.error("Failed to load the model. Check the logs for details.")
st.stop()
# Set seed if specified
generator = None
if seed != -1:
device = "cuda" if torch.cuda.is_available() else "cpu"
generator = torch.Generator(device).manual_seed(seed)
# Generate the image
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator
).images[0]
# Display the generated image
st.image(image, caption="Generated Portrait", use_column_width=True)
# Option to download
buf = io.BytesIO()
image.save(buf, format="PNG")
byte_im = buf.getvalue()
st.download_button(
label="Download Portrait",
data=byte_im,
file_name="generated_portrait.png",
mime="image/png"
)
except Exception as e:
st.error(f"An error occurred during generation: {str(e)}")
st.info("Make sure you have enough GPU memory (T4 or better recommended).")
# Add hardware info at the bottom
if torch.cuda.is_available():
st.markdown("---")
st.markdown(f"""
### Hardware Info
- Running on: {torch.cuda.get_device_name(0)}
- Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB
""")
else:
st.markdown("---")
st.markdown("⚠️ Running on CPU. For better performance, use a GPU runtime.")