Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Set page config
|
6 |
+
st.set_page_config(
|
7 |
+
page_title="Portrait Generator",
|
8 |
+
page_icon="🖼️",
|
9 |
+
layout="centered"
|
10 |
+
)
|
11 |
+
|
12 |
+
# App title and description
|
13 |
+
st.title("AI Portrait Generator")
|
14 |
+
st.markdown("Generate beautiful portraits using the AWPortraitCN2 model")
|
15 |
+
|
16 |
+
# Model parameters
|
17 |
+
with st.sidebar:
|
18 |
+
st.header("Generation Settings")
|
19 |
+
steps = st.slider("Inference Steps", min_value=20, max_value=100, value=40)
|
20 |
+
guidance_scale = st.slider("Guidance Scale", min_value=1.0, max_value=15.0, value=7.5, step=0.5)
|
21 |
+
negative_prompt = st.text_area(
|
22 |
+
"Negative Prompt",
|
23 |
+
value="lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, watermark, signature, out of frame"
|
24 |
+
)
|
25 |
+
seed = st.number_input("Random Seed (leave at -1 for random)", min_value=-1, value=-1)
|
26 |
+
|
27 |
+
# Main prompt input
|
28 |
+
prompt = st.text_area(
|
29 |
+
"Describe the portrait you want to generate",
|
30 |
+
value="Masterpiece portrait of a beautiful young woman with flowing hair, detailed face, photorealistic, 8k, professional photography"
|
31 |
+
)
|
32 |
+
|
33 |
+
# Generate button
|
34 |
+
if st.button("Generate Portrait", type="primary"):
|
35 |
+
with st.spinner("Loading model and generating portrait..."):
|
36 |
+
try:
|
37 |
+
# Set up the model pipeline
|
38 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
39 |
+
"Shakker-Labs/AWPortraitCN2",
|
40 |
+
torch_dtype=torch.float16,
|
41 |
+
use_safetensors=True
|
42 |
+
)
|
43 |
+
|
44 |
+
# Move to GPU if available
|
45 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
46 |
+
pipeline = pipeline.to(device)
|
47 |
+
|
48 |
+
# Set seed if specified
|
49 |
+
generator = None
|
50 |
+
if seed != -1:
|
51 |
+
generator = torch.Generator(device).manual_seed(seed)
|
52 |
+
|
53 |
+
# Generate the image
|
54 |
+
image = pipeline(
|
55 |
+
prompt=prompt,
|
56 |
+
negative_prompt=negative_prompt,
|
57 |
+
num_inference_steps=steps,
|
58 |
+
guidance_scale=guidance_scale,
|
59 |
+
generator=generator
|
60 |
+
).images[0]
|
61 |
+
|
62 |
+
# Display the generated image
|
63 |
+
st.image(image, caption="Generated Portrait", use_column_width=True)
|
64 |
+
|
65 |
+
# Option to download
|
66 |
+
# Convert the PIL image to bytes
|
67 |
+
import io
|
68 |
+
from PIL import Image
|
69 |
+
buf = io.BytesIO()
|
70 |
+
image.save(buf, format="PNG")
|
71 |
+
byte_im = buf.getvalue()
|
72 |
+
|
73 |
+
st.download_button(
|
74 |
+
label="Download Portrait",
|
75 |
+
data=byte_im,
|
76 |
+
file_name="generated_portrait.png",
|
77 |
+
mime="image/png"
|
78 |
+
)
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
st.error(f"An error occurred: {e}")
|
82 |
+
st.info("Make sure you have enough GPU memory and the required dependencies installed.")
|
83 |
+
|
84 |
+
# Add requirements info at the bottom
|
85 |
+
st.markdown("---")
|
86 |
+
st.markdown("""
|
87 |
+
### Requirements
|
88 |
+
To run this app, you need:
|
89 |
+
- diffusers
|
90 |
+
- transformers
|
91 |
+
- accelerate
|
92 |
+
- torch
|
93 |
+
- streamlit
|
94 |
+
|
95 |
+
Install with: `pip install diffusers transformers accelerate torch streamlit`
|
96 |
+
""")
|