File size: 10,239 Bytes
799674c ae96d97 799674c 127a259 799674c 127a259 799674c b740ca9 127a259 ba92cc5 127a259 799674c b740ca9 40d1509 b740ca9 127a259 799674c 127a259 8991b3b 8df7e0c 8991b3b 127a259 8991b3b 127a259 1f0f8d6 127a259 b3f6cdf c9cfa8d faddfab 799674c 127a259 8991b3b 127a259 faddfab 8991b3b 127a259 1f0f8d6 127a259 ddf482a 799674c 127a259 1f0f8d6 ae96d97 1f0f8d6 799674c ae96d97 127a259 799674c eaeebfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
# from ontochat.functions import set_openai_api_key, user_story_generator, cq_generator, load_example_user_story, clustering_generator, ontology_testing, load_example
from ontochat.functions import set_openai_api_key, user_story_generator, load_example
user_story_template = """**Persona:**\n\n- Name: -\n- Age: -\n- Occupation: -\n- Skills: -\n- Interests: -\n\n**Goal:**\n\n- Description: -\n- Keywords: -\n\n**Scenario:**\n\n- Before: -\n- During: -\n- After: -\n\n**Example Data:**\n\n- Category: -\n- Data: -\n\n**Resources:**\n\n- Resource Name: -\n- Link: -"""
with gr.Blocks() as set_api_key:
gr.Markdown(
"""
# Welcome to OntoChat! 👋
Hi there! I'm OntoChat, your conversational assistant for ontology-based system requirements engineering. (1) 📋 I assist with ontology requirements elicitation by asking targeted questions, collecting user inputs, providing example answers, and recommending prompt templates to guide you. (2) 📝 I offer customizable prompts designed for different interaction stages, ensuring structured guidance throughout the process. (3) ⚙️ You can edit placeholders within these templates to refine constraints and shape my responses to fit your specific needs. (4) 🔄 I continuously improve my responses based on your feedback until you're satisfied. Let's make ontology-based system development smoother and more interactive! 🚀 For more details, visit 🌐 [OntoChat on GitHub](https://github.com/King-s-Knowledge-Graph-Lab/OntoChat).
"""
)
# ### Citations
# [1] Zhang B, Carriero VA, Schreiberhuber K, Tsaneva S, González LS, Kim J, de Berardinis J. OntoChat: a Framework for Conversational Ontology Engineering using Language Models. arXiv preprint arXiv:2403.05921. 2024 Mar 9.
# [2] Zhao Y, Zhang B, Hu X, Ouyang S, Kim J, Jain N, de Berardinis J, Meroño-Peñuela A, Simperl E. Improving Ontology Requirements Engineering with OntoChat and Participatory Prompting. InProceedings of the AAAI Symposium Series 2024 Nov 8 (Vol. 4, No. 1, pp. 253-257).
with gr.Group():
api_key = gr.Textbox(
label="OpenAI API Key",
info="Please input your OpenAI API Key if you don't have it set up on your own machine. Please note that "
"the key will only be used for this demo and will not be uploaded or used anywhere else."
)
api_key_btn = gr.Button(value="Set API Key")
api_key_btn.click(fn=set_openai_api_key, inputs=api_key, outputs=api_key)
with gr.Blocks() as user_story_interface:
with gr.Row():
with gr.Column(scale=1):
user_story_chatbot = gr.Chatbot(
value=[
{"role": "assistant", "content": (
"Hello! I'm OntoChat 😊. I'll help you create an user story for an ontology-based system!\n\n 1. I will ask you one **elicitation question** at a time, present an **example answer** to support your understanding, and recommend a **prompt template** 📄 for answering.\n\n 2. Don't worry about prompting—find the **template** 📄 I recommended and edit the **placeholders** 📝 to craft an effective response 👍.\n\n 3. Within a prompt template:\n - **\*\*[]\*\*** placeholders are **mandatory**.\n - **\*[]\*** placeholders are **optional**.\n\n 4. I will **refine** my generation iteratively based on your input 🔄 until you are satisfied ✅.\n\n Let's get started! **What is the domain for which this ontology-based system is designed?**\n\n **For example:** *Healthcare, Wine, Music, etc.*\n\n Use template **[Create Domain]** to answer. 🚀"
)}
],
height="472px",
type="messages"
)
user_story_input = gr.Textbox(
label="Message OntoChat",
placeholder="Please type your message here and press Enter to interact with the chatbot:",
max_lines = 20,
lines = 1
)
elicitation_questions_dataset = gr.Dataset(
components=[user_story_input],
label="Prompt Templates",
type="index",
samples=[
["Create Domain"],
["Create Persona"],
["Create User Goal"],
["Create Actions"],
["Create Keywords"],
["Create Current Methods"],
["Create Challenges"],
["Create New Methods"],
["Create Outcomes"]
],
samples_per_page = 10
)
user_story_input.submit(
fn=user_story_generator,
inputs=[user_story_input, user_story_chatbot],
outputs=[user_story_chatbot, user_story_input]
)
elicitation_questions_dataset.click(
fn=load_example,
inputs=[elicitation_questions_dataset],
outputs=[user_story_input]
)
# with gr.Blocks() as cq_interface:
# with gr.Row():
# with gr.Column():
# cq_chatbot = gr.Chatbot(
# value=[
# {
# "role": "assistant",
# "content": (
# "I am OntoChat, your conversational ontology engineering assistant. Here is the second step of "
# "the system. Please give me your user story and tell me how many competency questions you want "
# "me to generate from the user story."
# )
# }
# ],
# type="messages"
# )
# cq_input = gr.Textbox(
# label="Chatbot input",
# placeholder="Please type your message here and press Enter to interact with the chatbot:"
# )
# gr.Markdown(
# """
# ### User story examples
# Click the button below to use an example user story from
# [Linka](https://github.com/polifonia-project/stories/tree/main/Linka_Computer_Scientist) in Polifonia.
# """
# )
# example_btn = gr.Button(value="Use example user story")
# example_btn.click(
# fn=load_example_user_story,
# inputs=[],
# outputs=[cq_input]
# )
# cq_output = gr.TextArea(
# label="Competency questions",
# interactive=True
# )
# cq_input.submit(
# fn=cq_generator,
# inputs=[
# cq_input, cq_chatbot
# ],
# outputs=[
# cq_output, cq_chatbot, cq_input
# ]
# )
# clustering_interface = gr.Interface(
# fn=clustering_generator,
# inputs=[
# gr.TextArea(
# label="Competency questions",
# info="Please copy the previously generated competency questions and paste it here. You can also modify "
# "the questions before submitting them."
# ),
# gr.Dropdown(
# value="LLM clustering",
# choices=["LLM clustering", "Agglomerative clustering"],
# label="Clustering method",
# info="Please select the clustering method."
# ),
# gr.Textbox(
# label="Number of clusters (optional for LLM clustering)",
# info="Please input the number of clusters you want to generate. And please do not input a number that "
# "exceeds the total number of competency questions."
# )
# ],
# outputs=[
# gr.Image(label="Visualization"),
# gr.Code(
# language='json',
# label="Competency Question clusters"
# )
# ],
# title="OntoChat",
# description="This is the third step of OntoChat. Please copy the generated competency questions from the previous "
# "step and run the clustering algorithm to group the competency questions based on their topics. From "
# "our experience, LLM clustering has the best performance.",
# flagging_mode="never"
# )
# with gr.Blocks() as testing_interface:
# gr.Markdown(
# """
# # OntoChat
# This is the final part of OntoChat which performs ontology testing based on the input ontology file and CQs.
# """
# )
# with gr.Group():
# api_key = gr.Textbox(
# label="OpenAI API Key",
# placeholder="If you have set the key in other tabs, you don't have to set it again.",
# info="Please input your OpenAI API Key if you don't have it set up on your own machine. Please note that "
# "the key will only be used for this demo and will not be uploaded or used anywhere else."
# )
# api_key_btn = gr.Button(value="Set API Key")
# api_key_btn.click(fn=set_openai_api_key, inputs=api_key, outputs=api_key)
# ontology_file = gr.File(label="Ontology file")
# ontology_desc = gr.Textbox(
# label="Ontology description",
# placeholder="Please provide a description of the ontology uploaded to provide basic information and "
# "additional context."
# )
# cq_testing_input = gr.Textbox(
# label="Competency questions",
# placeholder="Please provide the competency questions that you want to test with."
# )
# testing_btn = gr.Button(value="Test")
# testing_output = gr.TextArea(label="Ontology testing output")
# testing_btn.click(
# fn=ontology_testing,
# inputs=[
# ontology_file, ontology_desc, cq_testing_input
# ],
# outputs=[
# testing_output
# ]
# )
demo = gr.TabbedInterface(
# [set_api_key, user_story_interface, cq_interface, clustering_interface, testing_interface],
[set_api_key, user_story_interface],
["Set API Key", "User Story Generation", "Competency Question Extraction", "Competency Question Analysis", "Ontology Testing"]
)
if __name__ == "__main__":
demo.launch(share=True)
|