Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,123 +1,84 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import sys
|
| 4 |
import time
|
| 5 |
import os
|
| 6 |
import random
|
| 7 |
-
from PIL import Image
|
| 8 |
-
import torch
|
| 9 |
-
import asyncio # Import asyncio
|
| 10 |
-
from skyreelsinfer import TaskType
|
| 11 |
from skyreelsinfer.offload import OffloadConfig
|
| 12 |
-
from skyreelsinfer
|
| 13 |
-
from
|
| 14 |
from diffusers.utils import export_to_video
|
| 15 |
from diffusers.utils import load_image
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
os.putenv("HF_HUB_ENABLE_HF_TRANSFER", "1")
|
| 20 |
-
|
| 21 |
-
# No longer needed here: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
# high_cpu_memory=True,
|
| 36 |
-
# parameters_level=True,
|
| 37 |
-
#),
|
| 38 |
-
use_multiprocessing=False,
|
| 39 |
)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
# Make generate_video async
|
| 49 |
-
async def generate_video(prompt, image_file, predictor):
|
| 50 |
-
if image_file is None:
|
| 51 |
-
return gr.Error("Error: For i2v, provide an image.")
|
| 52 |
-
if not isinstance(prompt, str) or not prompt.strip():
|
| 53 |
-
return gr.Error("Error: Please provide a prompt.")
|
| 54 |
-
if predictor is None:
|
| 55 |
-
return gr.Error("Error: Model not loaded.")
|
| 56 |
-
random.seed(time.time())
|
| 57 |
-
seed = int(random.randrange(4294967294))
|
| 58 |
kwargs = {
|
| 59 |
"prompt": prompt,
|
| 60 |
-
"height":
|
| 61 |
-
"width":
|
| 62 |
-
"num_frames":
|
| 63 |
"num_inference_steps": 30,
|
| 64 |
-
"seed":
|
| 65 |
-
"guidance_scale":
|
| 66 |
"embedded_guidance_scale": 1.0,
|
| 67 |
-
"negative_prompt": "
|
| 68 |
"cfg_for": False,
|
| 69 |
}
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
except Exception as e:
|
| 76 |
-
return gr.Error(f"Image loading error: {e}")
|
| 77 |
-
try:
|
| 78 |
-
output = predictor.inference(kwargs)
|
| 79 |
-
frames = output
|
| 80 |
-
except Exception as e:
|
| 81 |
-
return gr.Error(f"Inference error: {e}"), None # Return None for predictor on error
|
| 82 |
-
save_dir = "./result/i2v" # Consistent directory
|
| 83 |
os.makedirs(save_dir, exist_ok=True)
|
| 84 |
-
video_out_file =
|
| 85 |
-
print(f"
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
except Exception as e:
|
| 89 |
-
return gr.Error(f"Video export error: {e}"), None # Return None for predictor
|
| 90 |
-
return video_out_file, predictor # Return updated predictor
|
| 91 |
|
| 92 |
-
def
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
image_file.change(
|
| 110 |
-
display_image,
|
| 111 |
-
inputs=[image_file],
|
| 112 |
-
outputs=[image_file_preview]
|
| 113 |
-
)
|
| 114 |
-
generate_button.click(
|
| 115 |
-
fn=generate_video,
|
| 116 |
-
inputs=[prompt_textbox, image_file, predictor_state],
|
| 117 |
-
outputs=[output_video, predictor_state], # Output predictor_state
|
| 118 |
-
)
|
| 119 |
-
predictor_state.value = await load_model() # load and set predictor
|
| 120 |
-
await demo.launch()
|
| 121 |
|
| 122 |
if __name__ == "__main__":
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
+
import argparse
|
| 4 |
import sys
|
| 5 |
import time
|
| 6 |
import os
|
| 7 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from skyreelsinfer.offload import OffloadConfig
|
| 9 |
+
from skyreelsinfer import TaskType
|
| 10 |
+
from skyreelsinfer.skyreels_video_infer import SkyReelsVideoSingleGpuInfer
|
| 11 |
from diffusers.utils import export_to_video
|
| 12 |
from diffusers.utils import load_image
|
| 13 |
|
| 14 |
+
#predictor = None
|
| 15 |
+
#task_type = None
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
#@spaces.GPU(duration=120)
|
| 18 |
+
def init_predictor():
|
| 19 |
+
global predictor
|
| 20 |
+
predictor = SkyReelsVideoSingleGpuInfer(
|
| 21 |
+
task_type= TaskType.I2V,
|
| 22 |
+
model_id="Skywork/SkyReels-V1-Hunyuan-I2V",
|
| 23 |
+
quant_model=False,
|
| 24 |
+
is_offload=False,
|
| 25 |
+
offload_config=OffloadConfig(
|
| 26 |
+
high_cpu_memory=True,
|
| 27 |
+
parameters_level=True,
|
| 28 |
+
compiler_transformer=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
)
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
@spaces.GPU(duration=80)
|
| 33 |
+
def generate_video(prompt, seed, image=None):
|
| 34 |
+
print(f"image:{type(image)}")
|
| 35 |
+
if seed == -1:
|
| 36 |
+
random.seed(time.time())
|
| 37 |
+
seed = int(random.randrange(4294967294))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
kwargs = {
|
| 39 |
"prompt": prompt,
|
| 40 |
+
"height": 512,
|
| 41 |
+
"width": 512,
|
| 42 |
+
"num_frames": 97,
|
| 43 |
"num_inference_steps": 30,
|
| 44 |
+
"seed": seed,
|
| 45 |
+
"guidance_scale": 6.0,
|
| 46 |
"embedded_guidance_scale": 1.0,
|
| 47 |
+
"negative_prompt": "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
|
| 48 |
"cfg_for": False,
|
| 49 |
}
|
| 50 |
+
assert image is not None, "please input image"
|
| 51 |
+
kwargs["image"] = load_image(image=image)
|
| 52 |
+
#global predictor
|
| 53 |
+
output = predictor.inference(kwargs)
|
| 54 |
+
save_dir = f"./result/{task_type}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
os.makedirs(save_dir, exist_ok=True)
|
| 56 |
+
video_out_file = f"{save_dir}/{prompt[:100].replace('/','')}_{seed}.mp4"
|
| 57 |
+
print(f"generate video, local path: {video_out_file}")
|
| 58 |
+
export_to_video(output, video_out_file, fps=24)
|
| 59 |
+
return video_out_file, kwargs
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
def create_gradio_interface():
|
| 62 |
+
with gr.Blocks() as demo:
|
| 63 |
+
with gr.Row():
|
| 64 |
+
image = gr.Image(label="Upload Image", type="filepath")
|
| 65 |
+
prompt = gr.Textbox(label="Input Prompt")
|
| 66 |
+
seed = gr.Number(label="Random Seed", value=-1)
|
| 67 |
+
submit_button = gr.Button("Generate Video")
|
| 68 |
+
output_video = gr.Video(label="Generated Video")
|
| 69 |
+
output_params = gr.Textbox(label="Output Parameters")
|
| 70 |
+
submit_button.click(
|
| 71 |
+
fn=generate_video,
|
| 72 |
+
inputs=[prompt, seed, image],
|
| 73 |
+
outputs=[output_video, output_params],
|
| 74 |
+
)
|
| 75 |
+
return demo
|
| 76 |
+
|
| 77 |
+
#init_predictor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
if __name__ == "__main__":
|
| 80 |
+
#import multiprocessing
|
| 81 |
+
#multiprocessing.freeze_support()
|
| 82 |
+
init_predictor()
|
| 83 |
+
demo = create_gradio_interface()
|
| 84 |
+
demo.launch()
|