Spaces:
Paused
Paused
Update skyreelsinfer/skyreels_video_infer.py
Browse files
skyreelsinfer/skyreels_video_infer.py
CHANGED
@@ -4,6 +4,17 @@ import time
|
|
4 |
from datetime import timedelta
|
5 |
from typing import Any
|
6 |
from typing import Dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# DELAY ALL THESE IMPORTS:
|
9 |
# import torch
|
@@ -34,7 +45,7 @@ class SkyReelsVideoInfer:
|
|
34 |
model_id: str,
|
35 |
quant_model: bool = True,
|
36 |
is_offload: bool = True,
|
37 |
-
offload_config =
|
38 |
use_multiprocessing: bool = False,
|
39 |
):
|
40 |
self.task_type = task_type
|
@@ -42,7 +53,6 @@ class SkyReelsVideoInfer:
|
|
42 |
self.quant_model = quant_model
|
43 |
self.is_offload = is_offload
|
44 |
self.offload_config = offload_config
|
45 |
-
|
46 |
self._initialize_pipeline()
|
47 |
|
48 |
def _load_model(
|
@@ -52,31 +62,16 @@ class SkyReelsVideoInfer:
|
|
52 |
quant_model: bool = True,
|
53 |
device: str = "cuda",
|
54 |
):
|
55 |
-
# DELAYED IMPORTS:
|
56 |
-
import torch
|
57 |
-
from diffusers import HunyuanVideoTransformer3DModel
|
58 |
-
from diffusers import DiffusionPipeline
|
59 |
-
from PIL import Image
|
60 |
-
from transformers import LlamaModel
|
61 |
-
from torchao.quantization import float8_weight_only
|
62 |
-
from torchao.quantization import quantize_
|
63 |
-
from .pipelines import SkyreelsVideoPipeline # Local import
|
64 |
-
|
65 |
-
|
66 |
logger.info(f"load model model_id:{model_id} quan_model:{quant_model} device:{device}")
|
67 |
-
|
68 |
text_encoder = LlamaModel.from_pretrained(
|
69 |
base_model_id,
|
70 |
subfolder="text_encoder",
|
71 |
torch_dtype=torch.bfloat16,
|
72 |
).to(device)
|
73 |
-
|
74 |
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
75 |
model_id,
|
76 |
torch_dtype=torch.bfloat16,
|
77 |
).to(device)
|
78 |
-
|
79 |
-
|
80 |
if quant_model:
|
81 |
quantize_(text_encoder, float8_weight_only(), device=device)
|
82 |
quantize_(transformer, float8_weight_only(), device=device)
|
@@ -90,13 +85,9 @@ class SkyReelsVideoInfer:
|
|
90 |
return pipe
|
91 |
|
92 |
def _initialize_pipeline(self):
|
93 |
-
#More Delayed Imports
|
94 |
-
from .offload import Offload
|
95 |
-
|
96 |
self.pipe = self._load_model( #No : SkyreelsVideoPipeline
|
97 |
model_id=self.model_id, quant_model=self.quant_model, device="cuda"
|
98 |
)
|
99 |
-
|
100 |
if self.is_offload and self.offload_config:
|
101 |
Offload.offload(
|
102 |
pipeline=self.pipe,
|
@@ -104,8 +95,6 @@ class SkyReelsVideoInfer:
|
|
104 |
)
|
105 |
|
106 |
def inference(self, kwargs):
|
107 |
-
#DELAYED IMPORTS
|
108 |
-
from . import TaskType
|
109 |
if self.task_type == TaskType.I2V:
|
110 |
image = kwargs.pop("image")
|
111 |
output = self.pipe(image=image, **kwargs)
|
|
|
4 |
from datetime import timedelta
|
5 |
from typing import Any
|
6 |
from typing import Dict
|
7 |
+
import torch
|
8 |
+
from diffusers import HunyuanVideoTransformer3DModel
|
9 |
+
from diffusers import DiffusionPipeline
|
10 |
+
from PIL import Image
|
11 |
+
from transformers import LlamaModel
|
12 |
+
from torchao.quantization import float8_weight_only
|
13 |
+
from torchao.quantization import quantize_
|
14 |
+
from .pipelines import SkyreelsVideoPipeline # Local import
|
15 |
+
from .offload import Offload
|
16 |
+
from .offload import OffloadConfig
|
17 |
+
from . import TaskType
|
18 |
|
19 |
# DELAY ALL THESE IMPORTS:
|
20 |
# import torch
|
|
|
45 |
model_id: str,
|
46 |
quant_model: bool = True,
|
47 |
is_offload: bool = True,
|
48 |
+
offload_config: OffloadConfig = OffloadConfig(),
|
49 |
use_multiprocessing: bool = False,
|
50 |
):
|
51 |
self.task_type = task_type
|
|
|
53 |
self.quant_model = quant_model
|
54 |
self.is_offload = is_offload
|
55 |
self.offload_config = offload_config
|
|
|
56 |
self._initialize_pipeline()
|
57 |
|
58 |
def _load_model(
|
|
|
62 |
quant_model: bool = True,
|
63 |
device: str = "cuda",
|
64 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
logger.info(f"load model model_id:{model_id} quan_model:{quant_model} device:{device}")
|
|
|
66 |
text_encoder = LlamaModel.from_pretrained(
|
67 |
base_model_id,
|
68 |
subfolder="text_encoder",
|
69 |
torch_dtype=torch.bfloat16,
|
70 |
).to(device)
|
|
|
71 |
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
72 |
model_id,
|
73 |
torch_dtype=torch.bfloat16,
|
74 |
).to(device)
|
|
|
|
|
75 |
if quant_model:
|
76 |
quantize_(text_encoder, float8_weight_only(), device=device)
|
77 |
quantize_(transformer, float8_weight_only(), device=device)
|
|
|
85 |
return pipe
|
86 |
|
87 |
def _initialize_pipeline(self):
|
|
|
|
|
|
|
88 |
self.pipe = self._load_model( #No : SkyreelsVideoPipeline
|
89 |
model_id=self.model_id, quant_model=self.quant_model, device="cuda"
|
90 |
)
|
|
|
91 |
if self.is_offload and self.offload_config:
|
92 |
Offload.offload(
|
93 |
pipeline=self.pipe,
|
|
|
95 |
)
|
96 |
|
97 |
def inference(self, kwargs):
|
|
|
|
|
98 |
if self.task_type == TaskType.I2V:
|
99 |
image = kwargs.pop("image")
|
100 |
output = self.pipe(image=image, **kwargs)
|