Spaces:
Paused
Paused
Update skyreelsinfer/offload.py
Browse files- skyreelsinfer/offload.py +493 -311
skyreelsinfer/offload.py
CHANGED
@@ -1,333 +1,515 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import argparse
|
4 |
-
import sys
|
5 |
import os
|
6 |
-
import
|
7 |
-
import
|
8 |
-
from PIL import Image
|
9 |
-
import numpy as np
|
10 |
-
|
11 |
-
# Removed environment-specific lines
|
12 |
-
from diffusers.utils import export_to_video
|
13 |
-
from diffusers.utils import load_image
|
14 |
|
15 |
import torch
|
16 |
-
import
|
17 |
-
from
|
18 |
-
|
19 |
-
torch.backends.cuda.matmul.allow_tf32 = False
|
20 |
-
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
21 |
-
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
22 |
-
torch.backends.cudnn.allow_tf32 = False
|
23 |
-
torch.backends.cudnn.deterministic = False
|
24 |
-
torch.backends.cudnn.benchmark = False
|
25 |
-
torch.set_float32_matmul_precision("highest")
|
26 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
27 |
-
|
28 |
-
logger = logging.getLogger(__name__)
|
29 |
|
30 |
|
31 |
-
|
32 |
class OffloadConfig:
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
self.high_cpu_memory = high_cpu_memory
|
41 |
-
self.parameters_level = parameters_level
|
42 |
-
self.compiler_transformer = compiler_transformer
|
43 |
-
self.compiler_cache = compiler_cache
|
44 |
-
|
45 |
-
|
46 |
-
class TaskType: # Keep here for infer
|
47 |
-
T2V = 0
|
48 |
-
I2V = 1
|
49 |
-
|
50 |
-
|
51 |
-
class LlamaModel:
|
52 |
-
@staticmethod
|
53 |
-
def from_pretrained(*args, **kwargs):
|
54 |
-
return LlamaModel()
|
55 |
-
|
56 |
-
def to(self, device):
|
57 |
-
return self
|
58 |
-
|
59 |
-
|
60 |
-
class HunyuanVideoTransformer3DModel:
|
61 |
-
@staticmethod
|
62 |
-
def from_pretrained(*args, **kwargs):
|
63 |
-
return HunyuanVideoTransformer3DModel()
|
64 |
-
|
65 |
-
def to(self, device):
|
66 |
-
return self
|
67 |
-
|
68 |
-
|
69 |
-
class SkyreelsVideoPipeline:
|
70 |
-
@staticmethod
|
71 |
-
def from_pretrained(*args, **kwargs):
|
72 |
-
return SkyreelsVideoPipeline()
|
73 |
-
|
74 |
-
def to(self, device):
|
75 |
-
return self
|
76 |
|
77 |
-
def __call__(self, *args, **kwargs):
|
78 |
-
num_frames = kwargs.get("num_frames", 16) # Default to 16 frames
|
79 |
-
height = kwargs.get("height", 512)
|
80 |
-
width = kwargs.get("width", 512)
|
81 |
-
|
82 |
-
if "image" in kwargs: # I2V
|
83 |
-
image = kwargs["image"]
|
84 |
-
# Convert PIL Image to PyTorch tensor (and normalize to [0, 1])
|
85 |
-
image_tensor = torch.from_numpy(np.array(image)).float() / 255.0
|
86 |
-
image_tensor = image_tensor.permute(2, 0, 1).unsqueeze(0) # (H, W, C) -> (1, C, H, W)
|
87 |
-
|
88 |
-
# Create video by repeating the image
|
89 |
-
frames = image_tensor.repeat(1, 1, num_frames, 1, 1) # (1, C, T, H, W)
|
90 |
-
frames = frames + torch.randn_like(frames) * 0.05 # Add a little noise
|
91 |
-
# Correct shape: (1, C, T, H, W) - NO PERMUTE HERE
|
92 |
-
|
93 |
-
else: # T2V
|
94 |
-
frames = torch.randn(1, 3, num_frames, height, width) # (1, C, T, H, W) - Correct!
|
95 |
-
|
96 |
-
return type("obj", (object,), {"frames": frames})() # No longer a list!
|
97 |
|
|
|
98 |
def __init__(self):
|
99 |
-
|
100 |
-
self.
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
self
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
torch.cuda.empty_cache()
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
torch.cuda.empty_cache()
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
torch.cuda.empty_cache()
|
148 |
-
return
|
149 |
-
|
150 |
-
def
|
151 |
-
self,
|
152 |
-
task_type: TaskType,
|
153 |
-
model_id: str,
|
154 |
-
quant_model: bool = True,
|
155 |
-
is_offload: bool = True,
|
156 |
-
offload_config: OffloadConfig = OffloadConfig(),
|
157 |
-
enable_cfg_parallel: bool = True,
|
158 |
-
):
|
159 |
-
self.task_type = task_type
|
160 |
-
self.model_id = model_id
|
161 |
-
self.quant_model = quant_model
|
162 |
-
self.is_offload = is_offload
|
163 |
-
self.offload_config = offload_config
|
164 |
-
self.enable_cfg_parallel = enable_cfg_parallel
|
165 |
-
self.pipe = None
|
166 |
-
self.is_initialized = False
|
167 |
-
self.gpu_device = None
|
168 |
-
|
169 |
-
def initialize(self):
|
170 |
-
"""Initializes the model and moves it to the GPU."""
|
171 |
-
if self.is_initialized:
|
172 |
-
return
|
173 |
|
174 |
-
if
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
-
if
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
182 |
else:
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
|
188 |
-
os.environ["TORCHINDUCTOR_CACHE_DIR"] = f"{self.offload_config.compiler_cache}"
|
189 |
-
self.pipe.transformer = torch.compile(
|
190 |
-
self.pipe.transformer, mode="max-autotune-no-cudagraphs", dynamic=True
|
191 |
)
|
192 |
-
if self.offload_config.compiler_transformer:
|
193 |
-
self.warm_up()
|
194 |
-
self.is_initialized = True
|
195 |
-
|
196 |
-
def warm_up(self):
|
197 |
-
if not self.is_initialized:
|
198 |
-
raise RuntimeError("Model must be initialized before warm-up.")
|
199 |
-
|
200 |
-
init_kwargs = {
|
201 |
-
"prompt": "A woman is dancing in a room",
|
202 |
-
"height": 544,
|
203 |
-
"width": 960,
|
204 |
-
"guidance_scale": 6,
|
205 |
-
"num_inference_steps": 1,
|
206 |
-
"negative_prompt": "bad quality",
|
207 |
-
"num_frames": 16,
|
208 |
-
"generator": torch.Generator(self.gpu_device).manual_seed(42),
|
209 |
-
"embedded_guidance_scale": 1.0,
|
210 |
-
}
|
211 |
-
if self.task_type == TaskType.I2V:
|
212 |
-
init_kwargs["image"] = Image.new("RGB", (544, 960), color="black")
|
213 |
-
self.pipe(**init_kwargs)
|
214 |
-
logger.info("Warm-up complete.")
|
215 |
-
|
216 |
-
def infer(self, **kwargs):
|
217 |
-
"""Handles inference requests."""
|
218 |
-
if not self.is_initialized:
|
219 |
-
self.initialize()
|
220 |
-
if "seed" in kwargs:
|
221 |
-
kwargs["generator"] = torch.Generator(self.gpu_device).manual_seed(kwargs["seed"])
|
222 |
-
del kwargs["seed"]
|
223 |
-
assert (self.task_type == TaskType.I2V and "image" in kwargs) or self.task_type == TaskType.T2V
|
224 |
-
result = self.pipe(**kwargs).frames # Return the tensor directly
|
225 |
-
return result
|
226 |
-
|
227 |
-
|
228 |
-
_predictor = None
|
229 |
-
|
230 |
-
|
231 |
-
@spaces.GPU(duration=90)
|
232 |
-
def generate_video(prompt: str, seed: int, image: str = None) -> tuple[str, dict]:
|
233 |
-
"""Generates a video based on the given prompt and seed.
|
234 |
-
|
235 |
-
Args:
|
236 |
-
prompt: The text prompt to guide video generation.
|
237 |
-
seed: The random seed for reproducibility.
|
238 |
-
image: Optional path to an image for Image-to-Video.
|
239 |
-
|
240 |
-
Returns:
|
241 |
-
A tuple containing the path to the generated video and the parameters used.
|
242 |
-
"""
|
243 |
-
global _predictor
|
244 |
-
|
245 |
-
if seed == -1:
|
246 |
-
random.seed()
|
247 |
-
seed = int(random.randrange(4294967294))
|
248 |
-
|
249 |
-
if image is None:
|
250 |
-
task_type = TaskType.T2V
|
251 |
-
model_id = "Skywork/SkyReels-V1-Hunyuan-T2V"
|
252 |
-
kwargs = {
|
253 |
-
"prompt": prompt,
|
254 |
-
"height": 512,
|
255 |
-
"width": 512,
|
256 |
-
"num_frames": 16,
|
257 |
-
"num_inference_steps": 30,
|
258 |
-
"seed": seed,
|
259 |
-
"guidance_scale": 7.5,
|
260 |
-
"negative_prompt": "bad quality, worst quality",
|
261 |
-
}
|
262 |
-
else:
|
263 |
-
task_type = TaskType.I2V
|
264 |
-
model_id = "Skywork/SkyReels-V1-Hunyuan-I2V"
|
265 |
-
kwargs = {
|
266 |
-
"prompt": prompt,
|
267 |
-
"image": load_image(image),
|
268 |
-
"height": 512,
|
269 |
-
"width": 512,
|
270 |
-
"num_frames": 97,
|
271 |
-
"num_inference_steps": 30,
|
272 |
-
"seed": seed,
|
273 |
-
"guidance_scale": 6.0,
|
274 |
-
"embedded_guidance_scale": 1.0,
|
275 |
-
"negative_prompt": "Aerial view, low quality, bad hands",
|
276 |
-
"cfg_for": False,
|
277 |
-
}
|
278 |
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
'''
|
302 |
-
|
303 |
-
save_dir = f"./result"
|
304 |
-
os.makedirs(save_dir, exist_ok=True)
|
305 |
-
video_out_file = f"{save_dir}/{seed}.mp4"
|
306 |
-
print(f"generate video, local path: {video_out_file}")
|
307 |
-
export_to_video(output, video_out_file, fps=24)
|
308 |
-
return video_out_file, kwargs
|
309 |
-
|
310 |
-
|
311 |
-
def create_gradio_interface():
|
312 |
-
with gr.Blocks() as demo:
|
313 |
-
with gr.Row():
|
314 |
-
with gr.Column():
|
315 |
-
image = gr.Image(label="Upload Image", type="filepath")
|
316 |
-
prompt = gr.Textbox(label="Input Prompt")
|
317 |
-
seed = gr.Number(label="Random Seed", value=-1)
|
318 |
-
with gr.Column():
|
319 |
-
submit_button = gr.Button("Generate Video")
|
320 |
-
output_video = gr.Video(label="Generated Video")
|
321 |
-
output_params = gr.Textbox(label="Output Parameters")
|
322 |
-
|
323 |
-
submit_button.click(
|
324 |
-
fn=generate_video,
|
325 |
-
inputs=[prompt, seed, image],
|
326 |
-
outputs=[output_video, output_params],
|
327 |
)
|
328 |
-
return demo
|
329 |
|
|
|
|
|
330 |
|
331 |
-
if
|
332 |
-
|
333 |
-
|
|
|
1 |
+
import functools
|
2 |
+
import gc
|
|
|
|
|
3 |
import os
|
4 |
+
import time
|
5 |
+
from dataclasses import dataclass
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
import torch
|
8 |
+
from diffusers.pipelines import DiffusionPipeline
|
9 |
+
from torchao.dtypes.affine_quantized_tensor import AffineQuantizedTensor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
+
@dataclass
|
13 |
class OffloadConfig:
|
14 |
+
# high_cpu_memory: Whether to use pinned memory for offload optimization. This can effectively prevent increased model offload latency caused by memory swapping.
|
15 |
+
high_cpu_memory: bool = True
|
16 |
+
# parameters_level: Whether to enable parameter-level offload. This further reduces VRAM requirements but may result in increased latency.
|
17 |
+
parameters_level: bool = False
|
18 |
+
# compiler_transformer: Whether to enable compilation optimization for the transformer.
|
19 |
+
compiler_transformer: bool = False
|
20 |
+
compiler_cache: str = "/tmp/compile_cache"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
class HfHook:
|
24 |
def __init__(self):
|
25 |
+
device_id = os.environ.get("LOCAL_RANK", 0)
|
26 |
+
self.execution_device = f"cuda:{device_id}"
|
27 |
+
|
28 |
+
def detach_hook(self, module):
|
29 |
+
pass
|
30 |
+
|
31 |
+
|
32 |
+
class Offload:
|
33 |
+
def __init__(self) -> None:
|
34 |
+
self.active_models = []
|
35 |
+
self.active_models_ids = []
|
36 |
+
self.active_subcaches = {}
|
37 |
+
self.models = {}
|
38 |
+
self.verboseLevel = 0
|
39 |
+
self.models_to_quantize = []
|
40 |
+
self.pinned_modules_data = {}
|
41 |
+
self.blocks_of_modules = {}
|
42 |
+
self.blocks_of_modules_sizes = {}
|
43 |
+
self.compile = False
|
44 |
+
self.device_mem_capacity = torch.cuda.get_device_properties(0).total_memory
|
45 |
+
self.last_reserved_mem_check = 0
|
46 |
+
self.loaded_blocks = {}
|
47 |
+
self.prev_blocks_names = {}
|
48 |
+
self.next_blocks_names = {}
|
49 |
+
device_id = os.environ.get("LOCAL_RANK", 0)
|
50 |
+
self.device_id = f"cuda:{device_id}"
|
51 |
+
self.default_stream = torch.cuda.default_stream(self.device_id) # torch.cuda.current_stream()
|
52 |
+
self.transfer_stream = torch.cuda.Stream()
|
53 |
+
self.async_transfers = False
|
54 |
+
self.last_run_model = None
|
55 |
+
|
56 |
+
@classmethod
|
57 |
+
def offload(cls, pipeline: DiffusionPipeline, config: OffloadConfig = OffloadConfig()):
|
58 |
+
"""
|
59 |
+
Enable offloading for multiple models in the pipeline, supporting video generation inference on user-level GPUs.
|
60 |
+
pipe: the pipeline object
|
61 |
+
config: offload strategy configuration
|
62 |
+
"""
|
63 |
+
self = cls()
|
64 |
+
self.pinned_modules_data = {}
|
65 |
+
if config.parameters_level:
|
66 |
+
model_budgets = {
|
67 |
+
"transformer": 600 * 1024 * 1024,
|
68 |
+
"text_encoder": 3 * 1024 * 1024 * 1024,
|
69 |
+
"text_encoder_2": 3 * 1024 * 1024 * 1024,
|
70 |
+
}
|
71 |
+
self.async_transfers = True
|
72 |
+
else:
|
73 |
+
model_budgets = {}
|
74 |
+
|
75 |
+
device_id = os.getenv("LOCAL_RANK", 0)
|
76 |
+
torch.set_default_device(f"cuda:{device_id}")
|
77 |
+
pipeline.hf_device_map = torch.device(f"cuda:{device_id}")
|
78 |
+
pipe_or_dict_of_modules = pipeline.components
|
79 |
+
if config.compiler_transformer:
|
80 |
+
pipeline.transformer.to("cuda")
|
81 |
+
models = {
|
82 |
+
k: v
|
83 |
+
for k, v in pipe_or_dict_of_modules.items()
|
84 |
+
if isinstance(v, torch.nn.Module) and not (config.compiler_transformer and k == "transformer")
|
85 |
+
}
|
86 |
+
print_info = {k: type(v) for k, v in models.items()}
|
87 |
+
print(f"offload models: {print_info}")
|
88 |
+
if config.compiler_transformer:
|
89 |
+
pipeline.text_encoder.to("cpu")
|
90 |
+
pipeline.text_encoder_2.to("cpu")
|
91 |
torch.cuda.empty_cache()
|
92 |
+
pipeline.transformer.to("cuda")
|
93 |
+
pipeline.vae.to("cuda")
|
94 |
+
|
95 |
+
def move_text_encoder_to_gpu(pipe):
|
96 |
+
torch.cuda.empty_cache()
|
97 |
+
pipe.text_encoder.to("cuda")
|
98 |
+
pipe.text_encoder_2.to("cuda")
|
99 |
+
|
100 |
+
def move_text_encoder_to_cpu(pipe):
|
101 |
+
pipe.text_encoder.to("cpu")
|
102 |
+
pipe.text_encoder_2.to("cpu")
|
103 |
+
torch.cuda.empty_cache()
|
104 |
+
|
105 |
+
setattr(pipeline, "text_encoder_to_cpu", functools.partial(move_text_encoder_to_cpu, pipeline))
|
106 |
+
setattr(pipeline, "text_encoder_to_gpu", functools.partial(move_text_encoder_to_gpu, pipeline))
|
107 |
+
|
108 |
+
for k, module in pipe_or_dict_of_modules.items():
|
109 |
+
if isinstance(module, torch.nn.Module):
|
110 |
+
for submodule_name, submodule in module.named_modules():
|
111 |
+
if not hasattr(submodule, "_hf_hook"):
|
112 |
+
setattr(submodule, "_hf_hook", HfHook())
|
113 |
+
return self
|
114 |
+
|
115 |
+
sizeofbfloat16 = torch.bfloat16.itemsize
|
116 |
+
modelPinned = config.high_cpu_memory
|
117 |
+
# Pin in RAM models
|
118 |
+
# Calculate the VRAM requirements of the computational modules to determine whether parameters-level offload is necessary.
|
119 |
+
for model_name, curr_model in models.items():
|
120 |
+
curr_model.to("cpu").eval()
|
121 |
+
pinned_parameters_data = {}
|
122 |
+
current_model_size = 0
|
123 |
+
print(f"{model_name} move to pinned memory:{modelPinned}")
|
124 |
+
for p in curr_model.parameters():
|
125 |
+
if isinstance(p, AffineQuantizedTensor):
|
126 |
+
if not modelPinned and p.tensor_impl.scale.dtype == torch.float32:
|
127 |
+
p.tensor_impl.scale = p.tensor_impl.scale.to(torch.bfloat16)
|
128 |
+
current_model_size += torch.numel(p.tensor_impl.scale) * sizeofbfloat16
|
129 |
+
current_model_size += torch.numel(p.tensor_impl.float8_data) * sizeofbfloat16 / 2
|
130 |
+
if modelPinned:
|
131 |
+
p.tensor_impl.float8_data = p.tensor_impl.float8_data.pin_memory()
|
132 |
+
p.tensor_impl.scale = p.tensor_impl.scale.pin_memory()
|
133 |
+
pinned_parameters_data[p] = [p.tensor_impl.float8_data, p.tensor_impl.scale]
|
134 |
+
else:
|
135 |
+
p.data = p.data.to(torch.bfloat16) if p.data.dtype == torch.float32 else p.data.to(p.data.dtype)
|
136 |
+
current_model_size += torch.numel(p.data) * p.data.element_size()
|
137 |
+
if modelPinned:
|
138 |
+
p.data = p.data.pin_memory()
|
139 |
+
pinned_parameters_data[p] = p.data
|
140 |
+
|
141 |
+
for buffer in curr_model.buffers():
|
142 |
+
buffer.data = (
|
143 |
+
buffer.data.to(torch.bfloat16)
|
144 |
+
if buffer.data.dtype == torch.float32
|
145 |
+
else buffer.data.to(buffer.data.dtype)
|
146 |
+
)
|
147 |
+
current_model_size += torch.numel(buffer.data) * buffer.data.element_size()
|
148 |
+
if modelPinned:
|
149 |
+
buffer.data = buffer.data.pin_memory()
|
150 |
+
|
151 |
+
if model_name not in self.models:
|
152 |
+
self.models[model_name] = curr_model
|
153 |
+
|
154 |
+
curr_model_budget = model_budgets.get(model_name, 0)
|
155 |
+
if curr_model_budget > 0 and curr_model_budget > current_model_size:
|
156 |
+
model_budgets[model_name] = 0
|
157 |
+
|
158 |
+
if modelPinned:
|
159 |
+
pinned_buffers_data = {b: b.data for b in curr_model.buffers()}
|
160 |
+
pinned_parameters_data.update(pinned_buffers_data)
|
161 |
+
self.pinned_modules_data[model_name] = pinned_parameters_data
|
162 |
+
gc.collect()
|
163 |
torch.cuda.empty_cache()
|
164 |
|
165 |
+
# if config.compiler_transformer:
|
166 |
+
# module = pipeline.transformer
|
167 |
+
# print("wrap transformer forward")
|
168 |
+
# # gpu model wrap
|
169 |
+
# for submodule_name, submodule in module.named_modules():
|
170 |
+
# if not hasattr(submodule, "_hf_hook"):
|
171 |
+
# setattr(submodule, "_hf_hook", HfHook())
|
172 |
+
#
|
173 |
+
# forward_method = getattr(module, "forward")
|
174 |
+
#
|
175 |
+
# def wrap_unload_all(*args, **kwargs):
|
176 |
+
# self.unload_all("transformer")
|
177 |
+
# return forward_method(*args, **kwargs)
|
178 |
+
#
|
179 |
+
# setattr(module, "forward", functools.update_wrapper(wrap_unload_all, forward_method))
|
180 |
+
|
181 |
+
# wrap forward methods
|
182 |
+
for model_name, curr_model in models.items():
|
183 |
+
current_budget = model_budgets.get(model_name, 0)
|
184 |
+
current_size = 0
|
185 |
+
self.loaded_blocks[model_name] = None
|
186 |
+
cur_blocks_prefix, prev_blocks_name, cur_blocks_name, cur_blocks_seq = None, None, None, -1
|
187 |
+
|
188 |
+
for submodule_name, submodule in curr_model.named_modules():
|
189 |
+
# create a fake accelerate parameter so that the _execution_device property returns always "cuda"
|
190 |
+
if not hasattr(submodule, "_hf_hook"):
|
191 |
+
setattr(submodule, "_hf_hook", HfHook())
|
192 |
+
|
193 |
+
if not submodule_name:
|
194 |
+
continue
|
195 |
+
|
196 |
+
# usr parameters-level offload
|
197 |
+
if current_budget > 0:
|
198 |
+
if isinstance(submodule, (torch.nn.ModuleList, torch.nn.Sequential)):
|
199 |
+
if cur_blocks_prefix == None:
|
200 |
+
cur_blocks_prefix = submodule_name + "."
|
201 |
+
else:
|
202 |
+
if not submodule_name.startswith(cur_blocks_prefix):
|
203 |
+
cur_blocks_prefix = submodule_name + "."
|
204 |
+
cur_blocks_name, cur_blocks_seq = None, -1
|
205 |
+
else:
|
206 |
+
if cur_blocks_prefix is not None:
|
207 |
+
if submodule_name.startswith(cur_blocks_prefix):
|
208 |
+
num = int(submodule_name[len(cur_blocks_prefix) :].split(".")[0])
|
209 |
+
if num != cur_blocks_seq and (cur_blocks_name == None or current_size > current_budget):
|
210 |
+
prev_blocks_name = cur_blocks_name
|
211 |
+
cur_blocks_name = cur_blocks_prefix + str(num)
|
212 |
+
cur_blocks_seq = num
|
213 |
+
else:
|
214 |
+
cur_blocks_prefix = None
|
215 |
+
prev_blocks_name = None
|
216 |
+
cur_blocks_name = None
|
217 |
+
cur_blocks_seq = -1
|
218 |
+
|
219 |
+
if hasattr(submodule, "forward"):
|
220 |
+
submodule_forward = getattr(submodule, "forward")
|
221 |
+
if not callable(submodule_forward):
|
222 |
+
print("***")
|
223 |
+
continue
|
224 |
+
if len(submodule_name.split(".")) == 1:
|
225 |
+
self.hook_me(submodule, curr_model, model_name, submodule_name, submodule_forward)
|
226 |
+
else:
|
227 |
+
self.hook_me_light(
|
228 |
+
submodule, model_name, cur_blocks_name, submodule_forward, context=submodule_name
|
229 |
+
)
|
230 |
+
current_size = self.add_module_to_blocks(model_name, cur_blocks_name, submodule, prev_blocks_name)
|
231 |
+
|
232 |
+
gc.collect()
|
233 |
torch.cuda.empty_cache()
|
234 |
+
return self
|
235 |
+
|
236 |
+
def add_module_to_blocks(self, model_name, blocks_name, submodule, prev_block_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
entry_name = model_name if blocks_name is None else model_name + "/" + blocks_name
|
239 |
+
if entry_name in self.blocks_of_modules:
|
240 |
+
blocks_params = self.blocks_of_modules[entry_name]
|
241 |
+
blocks_params_size = self.blocks_of_modules_sizes[entry_name]
|
242 |
+
else:
|
243 |
+
blocks_params = []
|
244 |
+
self.blocks_of_modules[entry_name] = blocks_params
|
245 |
+
blocks_params_size = 0
|
246 |
+
if blocks_name != None:
|
247 |
+
prev_entry_name = None if prev_block_name == None else model_name + "/" + prev_block_name
|
248 |
+
self.prev_blocks_names[entry_name] = prev_entry_name
|
249 |
+
if not prev_block_name == None:
|
250 |
+
self.next_blocks_names[prev_entry_name] = entry_name
|
251 |
+
|
252 |
+
for p in submodule.parameters(recurse=False):
|
253 |
+
blocks_params.append(p)
|
254 |
+
if isinstance(p, AffineQuantizedTensor):
|
255 |
+
blocks_params_size += p.tensor_impl.float8_data.nbytes
|
256 |
+
blocks_params_size += p.tensor_impl.scale.nbytes
|
257 |
+
else:
|
258 |
+
blocks_params_size += p.data.nbytes
|
259 |
+
|
260 |
+
for p in submodule.buffers(recurse=False):
|
261 |
+
blocks_params.append(p)
|
262 |
+
blocks_params_size += p.data.nbytes
|
263 |
+
|
264 |
+
self.blocks_of_modules_sizes[entry_name] = blocks_params_size
|
265 |
+
|
266 |
+
return blocks_params_size
|
267 |
+
|
268 |
+
def can_model_be_cotenant(self, model_name):
|
269 |
+
cotenants_map = {
|
270 |
+
"text_encoder": ["vae", "text_encoder_2"],
|
271 |
+
"text_encoder_2": ["vae", "text_encoder"],
|
272 |
+
}
|
273 |
+
potential_cotenants = cotenants_map.get(model_name, None)
|
274 |
+
if potential_cotenants is None:
|
275 |
+
return False
|
276 |
+
for existing_cotenant in self.active_models_ids:
|
277 |
+
if existing_cotenant not in potential_cotenants:
|
278 |
+
return False
|
279 |
+
return True
|
280 |
+
|
281 |
+
@torch.compiler.disable()
|
282 |
+
def gpu_load_blocks(self, model_name, blocks_name, async_load=False):
|
283 |
+
if blocks_name != None:
|
284 |
+
self.loaded_blocks[model_name] = blocks_name
|
285 |
+
|
286 |
+
def cpu_to_gpu(stream_to_use, blocks_params, record_for_stream=None):
|
287 |
+
with torch.cuda.stream(stream_to_use):
|
288 |
+
for p in blocks_params:
|
289 |
+
if isinstance(p, AffineQuantizedTensor):
|
290 |
+
p.tensor_impl.float8_data = p.tensor_impl.float8_data.cuda(
|
291 |
+
non_blocking=True, device=self.device_id
|
292 |
+
)
|
293 |
+
p.tensor_impl.scale = p.tensor_impl.scale.cuda(non_blocking=True, device=self.device_id)
|
294 |
+
else:
|
295 |
+
p.data = p.data.cuda(non_blocking=True, device=self.device_id)
|
296 |
+
|
297 |
+
if record_for_stream != None:
|
298 |
+
if isinstance(p, AffineQuantizedTensor):
|
299 |
+
p.tensor_impl.float8_data.record_stream(record_for_stream)
|
300 |
+
p.tensor_impl.scale.record_stream(record_for_stream)
|
301 |
+
else:
|
302 |
+
p.data.record_stream(record_for_stream)
|
303 |
+
|
304 |
+
entry_name = model_name if blocks_name is None else model_name + "/" + blocks_name
|
305 |
+
if self.verboseLevel >= 2:
|
306 |
+
model = self.models[model_name]
|
307 |
+
model_name = model._get_name()
|
308 |
+
print(f"Loading model {entry_name} ({model_name}) in GPU")
|
309 |
+
|
310 |
+
if self.async_transfers and blocks_name != None:
|
311 |
+
first = self.prev_blocks_names[entry_name] == None
|
312 |
+
next_blocks_entry = self.next_blocks_names[entry_name] if entry_name in self.next_blocks_names else None
|
313 |
+
if first:
|
314 |
+
cpu_to_gpu(torch.cuda.current_stream(), self.blocks_of_modules[entry_name])
|
315 |
+
torch.cuda.synchronize()
|
316 |
+
|
317 |
+
if next_blocks_entry != None:
|
318 |
+
cpu_to_gpu(self.transfer_stream, self.blocks_of_modules[next_blocks_entry])
|
319 |
|
320 |
+
else:
|
321 |
+
cpu_to_gpu(self.default_stream, self.blocks_of_modules[entry_name])
|
322 |
+
torch.cuda.synchronize()
|
323 |
+
|
324 |
+
@torch.compiler.disable()
|
325 |
+
def gpu_unload_blocks(self, model_name, blocks_name):
|
326 |
+
if blocks_name != None:
|
327 |
+
self.loaded_blocks[model_name] = None
|
328 |
+
|
329 |
+
blocks_name = model_name if blocks_name is None else model_name + "/" + blocks_name
|
330 |
+
|
331 |
+
if self.verboseLevel >= 2:
|
332 |
+
model = self.models[model_name]
|
333 |
+
model_name = model._get_name()
|
334 |
+
print(f"Unloading model {blocks_name} ({model_name}) from GPU")
|
335 |
+
|
336 |
+
blocks_params = self.blocks_of_modules[blocks_name]
|
337 |
+
|
338 |
+
if model_name in self.pinned_modules_data:
|
339 |
+
pinned_parameters_data = self.pinned_modules_data[model_name]
|
340 |
+
for p in blocks_params:
|
341 |
+
if isinstance(p, AffineQuantizedTensor):
|
342 |
+
data = pinned_parameters_data[p]
|
343 |
+
p.tensor_impl.float8_data = data[0]
|
344 |
+
p.tensor_impl.scale = data[1]
|
345 |
+
else:
|
346 |
+
p.data = pinned_parameters_data[p]
|
347 |
+
else:
|
348 |
+
for p in blocks_params:
|
349 |
+
if isinstance(p, AffineQuantizedTensor):
|
350 |
+
p.tensor_impl.float8_data = p.tensor_impl.float8_data.cpu()
|
351 |
+
p.tensor_impl.scale = p.tensor_impl.scale.cpu()
|
352 |
+
else:
|
353 |
+
p.data = p.data.cpu()
|
354 |
+
|
355 |
+
@torch.compiler.disable()
|
356 |
+
def gpu_load(self, model_name):
|
357 |
+
model = self.models[model_name]
|
358 |
+
self.active_models.append(model)
|
359 |
+
self.active_models_ids.append(model_name)
|
360 |
+
|
361 |
+
self.gpu_load_blocks(model_name, None)
|
362 |
+
|
363 |
+
# torch.cuda.current_stream().synchronize()
|
364 |
+
|
365 |
+
@torch.compiler.disable()
|
366 |
+
def unload_all(self, model_name: str):
|
367 |
+
if len(self.active_models_ids) == 0 and self.last_run_model == model_name:
|
368 |
+
self.last_run_model = model_name
|
369 |
+
return
|
370 |
+
for model_name in self.active_models_ids:
|
371 |
+
self.gpu_unload_blocks(model_name, None)
|
372 |
+
loaded_block = self.loaded_blocks[model_name]
|
373 |
+
if loaded_block != None:
|
374 |
+
self.gpu_unload_blocks(model_name, loaded_block)
|
375 |
+
self.loaded_blocks[model_name] = None
|
376 |
+
|
377 |
+
self.active_models = []
|
378 |
+
self.active_models_ids = []
|
379 |
+
self.active_subcaches = []
|
380 |
+
torch.cuda.empty_cache()
|
381 |
+
gc.collect()
|
382 |
+
self.last_reserved_mem_check = time.time()
|
383 |
+
self.last_run_model = model_name
|
384 |
+
|
385 |
+
def move_args_to_gpu(self, *args, **kwargs):
|
386 |
+
new_args = []
|
387 |
+
new_kwargs = {}
|
388 |
+
for arg in args:
|
389 |
+
if torch.is_tensor(arg):
|
390 |
+
if arg.dtype == torch.float32:
|
391 |
+
arg = arg.to(torch.bfloat16).cuda(non_blocking=True, device=self.device_id)
|
392 |
+
else:
|
393 |
+
arg = arg.cuda(non_blocking=True, device=self.device_id)
|
394 |
+
new_args.append(arg)
|
395 |
+
|
396 |
+
for k in kwargs:
|
397 |
+
arg = kwargs[k]
|
398 |
+
if torch.is_tensor(arg):
|
399 |
+
if arg.dtype == torch.float32:
|
400 |
+
arg = arg.to(torch.bfloat16).cuda(non_blocking=True, device=self.device_id)
|
401 |
+
else:
|
402 |
+
arg = arg.cuda(non_blocking=True, device=self.device_id)
|
403 |
+
new_kwargs[k] = arg
|
404 |
+
|
405 |
+
return new_args, new_kwargs
|
406 |
+
|
407 |
+
def ready_to_check_mem(self):
|
408 |
+
if self.compile:
|
409 |
+
return
|
410 |
+
cur_clock = time.time()
|
411 |
+
# can't check at each call if we can empty the cuda cache as quering the reserved memory value is a time consuming operation
|
412 |
+
if (cur_clock - self.last_reserved_mem_check) < 0.200:
|
413 |
+
return False
|
414 |
+
self.last_reserved_mem_check = cur_clock
|
415 |
+
return True
|
416 |
+
|
417 |
+
def empty_cache_if_needed(self):
|
418 |
+
mem_reserved = torch.cuda.memory_reserved()
|
419 |
+
mem_threshold = 0.9 * self.device_mem_capacity
|
420 |
+
if mem_reserved >= mem_threshold:
|
421 |
+
mem_allocated = torch.cuda.memory_allocated()
|
422 |
+
if mem_allocated <= 0.70 * mem_reserved:
|
423 |
+
torch.cuda.empty_cache()
|
424 |
+
tm = time.time()
|
425 |
+
if self.verboseLevel >= 2:
|
426 |
+
print(f"Empty Cuda cache at {tm}")
|
427 |
+
|
428 |
+
def any_param_or_buffer(self, target_module: torch.nn.Module):
|
429 |
+
|
430 |
+
for _ in target_module.parameters(recurse=False):
|
431 |
+
return True
|
432 |
+
|
433 |
+
for _ in target_module.buffers(recurse=False):
|
434 |
+
return True
|
435 |
+
|
436 |
+
return False
|
437 |
+
|
438 |
+
def hook_me_light(self, target_module, model_name, blocks_name, previous_method, context):
|
439 |
+
|
440 |
+
anyParam = self.any_param_or_buffer(target_module)
|
441 |
+
|
442 |
+
def check_empty_cuda_cache(module, *args, **kwargs):
|
443 |
+
if self.ready_to_check_mem():
|
444 |
+
self.empty_cache_if_needed()
|
445 |
+
return previous_method(*args, **kwargs)
|
446 |
+
|
447 |
+
def load_module_blocks(module, *args, **kwargs):
|
448 |
+
if blocks_name == None:
|
449 |
+
if self.ready_to_check_mem():
|
450 |
+
self.empty_cache_if_needed()
|
451 |
+
else:
|
452 |
+
loaded_block = self.loaded_blocks[model_name]
|
453 |
+
if loaded_block == None or loaded_block != blocks_name:
|
454 |
+
if loaded_block != None:
|
455 |
+
self.gpu_unload_blocks(model_name, loaded_block)
|
456 |
+
if self.ready_to_check_mem():
|
457 |
+
self.empty_cache_if_needed()
|
458 |
+
self.loaded_blocks[model_name] = blocks_name
|
459 |
+
self.gpu_load_blocks(model_name, blocks_name)
|
460 |
+
return previous_method(*args, **kwargs)
|
461 |
+
|
462 |
+
if hasattr(target_module, "_mm_id"):
|
463 |
+
orig_model_name = getattr(target_module, "_mm_id")
|
464 |
+
if self.verboseLevel >= 2:
|
465 |
+
print(
|
466 |
+
f"Model '{model_name}' shares module '{target_module._get_name()}' with module '{orig_model_name}' "
|
467 |
+
)
|
468 |
+
assert not anyParam
|
469 |
+
return
|
470 |
+
setattr(target_module, "_mm_id", model_name)
|
471 |
|
472 |
+
if blocks_name != None and anyParam:
|
473 |
+
setattr(
|
474 |
+
target_module,
|
475 |
+
"forward",
|
476 |
+
functools.update_wrapper(functools.partial(load_module_blocks, target_module), previous_method),
|
477 |
+
)
|
478 |
+
# print(f"new cache:{blocks_name}")
|
479 |
else:
|
480 |
+
setattr(
|
481 |
+
target_module,
|
482 |
+
"forward",
|
483 |
+
functools.update_wrapper(functools.partial(check_empty_cuda_cache, target_module), previous_method),
|
|
|
|
|
|
|
|
|
484 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
|
486 |
+
def hook_me(self, target_module, model, model_name, module_id, previous_method):
|
487 |
+
def check_change_module(module, *args, **kwargs):
|
488 |
+
performEmptyCacheTest = False
|
489 |
+
if not model_name in self.active_models_ids:
|
490 |
+
new_model_name = getattr(module, "_mm_id")
|
491 |
+
if not self.can_model_be_cotenant(new_model_name):
|
492 |
+
self.unload_all(model_name)
|
493 |
+
performEmptyCacheTest = False
|
494 |
+
self.gpu_load(new_model_name)
|
495 |
+
args, kwargs = self.move_args_to_gpu(*args, **kwargs)
|
496 |
+
if performEmptyCacheTest:
|
497 |
+
self.empty_cache_if_needed()
|
498 |
+
return previous_method(*args, **kwargs)
|
499 |
+
|
500 |
+
if hasattr(target_module, "_mm_id"):
|
501 |
+
return
|
502 |
+
setattr(target_module, "_mm_id", model_name)
|
503 |
+
|
504 |
+
setattr(
|
505 |
+
target_module,
|
506 |
+
"forward",
|
507 |
+
functools.update_wrapper(functools.partial(check_change_module, target_module), previous_method),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
508 |
)
|
|
|
509 |
|
510 |
+
if not self.verboseLevel >= 1:
|
511 |
+
return
|
512 |
|
513 |
+
if module_id == None or module_id == "":
|
514 |
+
model_name = model._get_name()
|
515 |
+
print(f"Hooked in model '{model_name}' ({model_name})")
|