import spaces import os import uuid os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1') os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1') alloc_conf_parts = [ 'expandable_segments:True', 'pinned_use_background_threads:True' # Specific to pinned memory. ] os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts) os.environ["SAFETENSORS_FAST_GPU"] = "1" os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1') import torch torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False torch.backends.cuda.preferred_blas_library="cublas" torch.backends.cuda.preferred_linalg_library="cusolver" torch.set_float32_matmul_precision("highest") import torchaudio from einops import rearrange import gradio as gr from stable_audio_tools import get_pretrained_model from stable_audio_tools.inference.generation import generate_diffusion_cond model, model_config = get_pretrained_model("ford442/stable-audio-open-1.0") device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") model.to(device,torch.float32) @spaces.GPU(duration=60) def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7, use_bfloat=False, use_eval=False): print(f"Prompt received: {prompt}") print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}") sample_rate = model_config["sample_rate"] sample_size = model_config["sample_size"] print(f"Sample rate: {sample_rate}, Sample size: {sample_size}") print("Model moved to device.") conditioning = [{ "prompt": prompt, "seconds_start": 0, "seconds_total": seconds_total }] print(f"Conditioning: {conditioning}") print("Generating audio...") if use_bfloat==True: model.to(torch.bfloat16) if use_eval==True: model.eval() output = generate_diffusion_cond( model, steps=steps, cfg_scale=cfg_scale, conditioning=conditioning, sample_size=sample_size, sigma_min=0.3, sigma_max=500, sampler_type="dpmpp-3m-sde", device=device ) print("Audio generated.") output = rearrange(output, "b d n -> d (b n)") # Peak normalize, clip, convert to int16 output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() unique_filename = f"output_{uuid.uuid4().hex}.mp3" print(f"Saving audio to file: {unique_filename}") torchaudio.save( unique_filename, output, sample_rate, format="mp3", encoding="MP3", bits_per_sample=320 ) print(f"Audio saved: {unique_filename}") return unique_filename interface = gr.Interface( fn=generate_audio, inputs=[ gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"), gr.Slider(0, 420, value=30, label="Duration in Seconds"), gr.Slider(10, 420, value=100, step=10, label="Number of Diffusion Steps"), gr.Slider(1.0, 32.0, value=7.0, step=0.1, label="CFG Scale"), gr.Checkbox(value=False, label="Use Brainfloat"), gr.Checkbox(value=False, label="Use eval()") ], outputs=gr.Audio(type="filepath", label="Generated Audio"), title="Stable Audio Generator", description="Generate variable-length stereo audio at 44.1kHz from text prompts using Stable Audio Open 1.0.", examples=[ [ "Create a serene soundscape of a quiet beach at sunset.", # Text prompt 45, # Duration in Seconds 100, # Number of Diffusion Steps 10.0, # CFG Scale ], [ "Generate an energetic and bustling city street scene with distant traffic and close conversations.", # Text prompt 30, # Duration in Seconds 120, # Number of Diffusion Steps 5.0, # CFG Scale ], [ "Simulate a forest ambiance with birds chirping and wind rustling through the leaves.", # Text prompt 60, # Duration in Seconds 140, # Number of Diffusion Steps 7.5, # CFG Scale ], [ "Recreate a gentle rainfall with distant thunder.", # Text prompt 35, # Duration in Seconds 110, # Number of Diffusion Steps 8.0, # CFG Scale ], [ "Imagine a jazz cafe environment with soft music and ambient chatter.", # Text prompt 25, # Duration in Seconds 90, # Number of Diffusion Steps 6.0, # CFG Scale ], ["Rock beat played in a treated studio, session drumming on an acoustic kit.", 30, # Duration in Seconds 100, # Number of Diffusion Steps 7.0, # CFG Scale ] ]) interface.launch()