1inkusFace commited on
Commit
46849d4
·
verified ·
1 Parent(s): aaed876

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -16,12 +16,12 @@ import numpy as np
16
  import random
17
 
18
  import torch
19
- torch.backends.cuda.matmul.allow_tf32 = False
20
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
21
  torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
22
- torch.backends.cudnn.allow_tf32 = False
23
  torch.backends.cudnn.deterministic = False
24
- torch.backends.cudnn.benchmark = False
25
  torch.backends.cuda.preferred_blas_library="cublas"
26
  torch.backends.cuda.preferred_linalg_library="cusolver"
27
  torch.set_float32_matmul_precision("highest")
@@ -150,7 +150,7 @@ def infer_60(
150
  sd35_path = f"sd35ll_{timestamp}.png"
151
  sd_image.save(sd35_path,optimize=False,compress_level=0)
152
  pyx.upload_to_ftp(sd35_path)
153
- upscaler_2.to(torch.device('cuda'))
154
  with torch.no_grad():
155
  upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
156
  upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
@@ -200,7 +200,7 @@ def infer_90(
200
  sd35_path = f"sd35ll_{timestamp}.png"
201
  sd_image.save(sd35_path,optimize=False,compress_level=0)
202
  pyx.upload_to_ftp(sd35_path)
203
- upscaler_2.to(torch.device('cuda'))
204
  with torch.no_grad():
205
  upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
206
  upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
@@ -250,7 +250,7 @@ def infer_110(
250
  sd35_path = f"sd35ll_{timestamp}.png"
251
  sd_image.save(sd35_path,optimize=False,compress_level=0)
252
  pyx.upload_to_ftp(sd35_path)
253
- upscaler_2.to(torch.device('cuda'))
254
  with torch.no_grad():
255
  upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
256
  upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
 
16
  import random
17
 
18
  import torch
19
+ torch.backends.cuda.matmul.allow_tf32 = True
20
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
21
  torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
22
+ torch.backends.cudnn.allow_tf32 = True
23
  torch.backends.cudnn.deterministic = False
24
+ torch.backends.cudnn.benchmark = True
25
  torch.backends.cuda.preferred_blas_library="cublas"
26
  torch.backends.cuda.preferred_linalg_library="cusolver"
27
  torch.set_float32_matmul_precision("highest")
 
150
  sd35_path = f"sd35ll_{timestamp}.png"
151
  sd_image.save(sd35_path,optimize=False,compress_level=0)
152
  pyx.upload_to_ftp(sd35_path)
153
+ upscaler_2.to(torch.device('cuda',non_blocking=True))
154
  with torch.no_grad():
155
  upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
156
  upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
 
200
  sd35_path = f"sd35ll_{timestamp}.png"
201
  sd_image.save(sd35_path,optimize=False,compress_level=0)
202
  pyx.upload_to_ftp(sd35_path)
203
+ upscaler_2.to(torch.device('cuda',non_blocking=True))
204
  with torch.no_grad():
205
  upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
206
  upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
 
250
  sd35_path = f"sd35ll_{timestamp}.png"
251
  sd_image.save(sd35_path,optimize=False,compress_level=0)
252
  pyx.upload_to_ftp(sd35_path)
253
+ upscaler_2.to(torch.device('cuda',non_blocking=True))
254
  with torch.no_grad():
255
  upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
256
  upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)