Update app.py
Browse files
app.py
CHANGED
|
@@ -9,7 +9,7 @@ import numpy as np
|
|
| 9 |
import random
|
| 10 |
|
| 11 |
import torch
|
| 12 |
-
from diffusers import StableDiffusion3Pipeline
|
| 13 |
from transformers import CLIPTextModelWithProjection, T5EncoderModel
|
| 14 |
from transformers import CLIPTokenizer, T5TokenizerFast
|
| 15 |
|
|
@@ -22,7 +22,6 @@ from huggingface_hub import hf_hub_download
|
|
| 22 |
import datetime
|
| 23 |
import cyper
|
| 24 |
|
| 25 |
-
from diffusers import AutoencoderKL
|
| 26 |
#from models.transformer_sd3 import SD3Transformer2DModel
|
| 27 |
#from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
| 28 |
|
|
@@ -82,6 +81,7 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
| 82 |
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
| 83 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
| 84 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
|
|
|
| 85 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
|
| 86 |
#torch_dtype=torch.bfloat16,
|
| 87 |
#use_safetensors=False,
|
|
@@ -89,12 +89,13 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
| 89 |
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
|
| 90 |
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
|
| 91 |
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
|
| 92 |
-
|
|
|
|
| 93 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
| 94 |
|
| 95 |
pipe.to(device=device, dtype=torch.bfloat16)
|
| 96 |
#pipe.to(device)
|
| 97 |
-
pipe.vae=vaeX.to('cpu')
|
| 98 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
|
| 99 |
|
| 100 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -113,7 +114,8 @@ def infer_30(
|
|
| 113 |
num_inference_steps,
|
| 114 |
progress=gr.Progress(track_tqdm=True),
|
| 115 |
):
|
| 116 |
-
pipe.vae.to('cpu')
|
|
|
|
| 117 |
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 118 |
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 119 |
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
|
@@ -163,7 +165,8 @@ def infer_60(
|
|
| 163 |
num_inference_steps,
|
| 164 |
progress=gr.Progress(track_tqdm=True),
|
| 165 |
):
|
| 166 |
-
pipe.vae.to('cpu')
|
|
|
|
| 167 |
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 168 |
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 169 |
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
|
@@ -213,7 +216,8 @@ def infer_90(
|
|
| 213 |
num_inference_steps,
|
| 214 |
progress=gr.Progress(track_tqdm=True),
|
| 215 |
):
|
| 216 |
-
pipe.vae.to('cpu')
|
|
|
|
| 217 |
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 218 |
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 219 |
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
|
@@ -263,7 +267,8 @@ def infer_100(
|
|
| 263 |
num_inference_steps,
|
| 264 |
progress=gr.Progress(track_tqdm=True),
|
| 265 |
):
|
| 266 |
-
pipe.vae.to('cpu')
|
|
|
|
| 267 |
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 268 |
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 269 |
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
|
@@ -307,7 +312,7 @@ body{background-color: blue;}
|
|
| 307 |
|
| 308 |
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
| 309 |
with gr.Column(elem_id="col-container"):
|
| 310 |
-
gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora")
|
| 311 |
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1) # Add this line
|
| 312 |
with gr.Row():
|
| 313 |
prompt = gr.Text(
|
|
|
|
| 9 |
import random
|
| 10 |
|
| 11 |
import torch
|
| 12 |
+
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
|
| 13 |
from transformers import CLIPTextModelWithProjection, T5EncoderModel
|
| 14 |
from transformers import CLIPTokenizer, T5TokenizerFast
|
| 15 |
|
|
|
|
| 22 |
import datetime
|
| 23 |
import cyper
|
| 24 |
|
|
|
|
| 25 |
#from models.transformer_sd3 import SD3Transformer2DModel
|
| 26 |
#from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
| 27 |
|
|
|
|
| 81 |
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
| 82 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
| 83 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
| 84 |
+
transformer=None,
|
| 85 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
|
| 86 |
#torch_dtype=torch.bfloat16,
|
| 87 |
#use_safetensors=False,
|
|
|
|
| 89 |
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
|
| 90 |
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
|
| 91 |
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
|
| 92 |
+
ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
|
| 93 |
+
pipe.transformer=ll_transformer
|
| 94 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
| 95 |
|
| 96 |
pipe.to(device=device, dtype=torch.bfloat16)
|
| 97 |
#pipe.to(device)
|
| 98 |
+
#pipe.vae=vaeX.to('cpu')
|
| 99 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
|
| 100 |
|
| 101 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 114 |
num_inference_steps,
|
| 115 |
progress=gr.Progress(track_tqdm=True),
|
| 116 |
):
|
| 117 |
+
pipe.vae=vaeX.to('cpu')
|
| 118 |
+
pipe.transformer=ll_transformer
|
| 119 |
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 120 |
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 121 |
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
|
|
|
| 165 |
num_inference_steps,
|
| 166 |
progress=gr.Progress(track_tqdm=True),
|
| 167 |
):
|
| 168 |
+
pipe.vae=vaeX.to('cpu')
|
| 169 |
+
pipe.transformer=ll_transformer
|
| 170 |
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 171 |
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 172 |
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
|
|
|
| 216 |
num_inference_steps,
|
| 217 |
progress=gr.Progress(track_tqdm=True),
|
| 218 |
):
|
| 219 |
+
pipe.vae=vaeX.to('cpu')
|
| 220 |
+
pipe.transformer=ll_transformer
|
| 221 |
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 222 |
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 223 |
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
|
|
|
| 267 |
num_inference_steps,
|
| 268 |
progress=gr.Progress(track_tqdm=True),
|
| 269 |
):
|
| 270 |
+
pipe.vae=vaeX.to('cpu')
|
| 271 |
+
pipe.transformer=ll_transformer
|
| 272 |
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 273 |
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 274 |
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
|
|
|
| 312 |
|
| 313 |
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
| 314 |
with gr.Column(elem_id="col-container"):
|
| 315 |
+
gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test")
|
| 316 |
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1) # Add this line
|
| 317 |
with gr.Row():
|
| 318 |
prompt = gr.Text(
|