Update app.py
Browse files
app.py
CHANGED
@@ -128,10 +128,10 @@ def infer_60(
|
|
128 |
progress=gr.Progress(track_tqdm=True),
|
129 |
):
|
130 |
pipe.vae=vaeX.to('cpu')
|
131 |
-
pipe.transformer=ll_transformer
|
132 |
-
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
133 |
-
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
134 |
-
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
135 |
seed = random.randint(0, MAX_SEED)
|
136 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
137 |
print('-- generating image --')
|
@@ -178,10 +178,10 @@ def infer_90(
|
|
178 |
progress=gr.Progress(track_tqdm=True),
|
179 |
):
|
180 |
pipe.vae=vaeX.to('cpu')
|
181 |
-
pipe.transformer=ll_transformer
|
182 |
-
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
183 |
-
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
184 |
-
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
185 |
seed = random.randint(0, MAX_SEED)
|
186 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
187 |
print('-- generating image --')
|
@@ -228,10 +228,10 @@ def infer_110(
|
|
228 |
progress=gr.Progress(track_tqdm=True),
|
229 |
):
|
230 |
pipe.vae=vaeX.to('cpu')
|
231 |
-
pipe.transformer=ll_transformer
|
232 |
-
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
233 |
-
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
234 |
-
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
235 |
seed = random.randint(0, MAX_SEED)
|
236 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
237 |
print('-- generating image --')
|
|
|
128 |
progress=gr.Progress(track_tqdm=True),
|
129 |
):
|
130 |
pipe.vae=vaeX.to('cpu')
|
131 |
+
pipe.config.transformer=ll_transformer
|
132 |
+
pipe.config.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
133 |
+
pipe.config.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
134 |
+
pipe.config.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
135 |
seed = random.randint(0, MAX_SEED)
|
136 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
137 |
print('-- generating image --')
|
|
|
178 |
progress=gr.Progress(track_tqdm=True),
|
179 |
):
|
180 |
pipe.vae=vaeX.to('cpu')
|
181 |
+
pipe.config.transformer=ll_transformer
|
182 |
+
pipe.config.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
183 |
+
pipe.config.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
184 |
+
pipe.config.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
185 |
seed = random.randint(0, MAX_SEED)
|
186 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
187 |
print('-- generating image --')
|
|
|
228 |
progress=gr.Progress(track_tqdm=True),
|
229 |
):
|
230 |
pipe.vae=vaeX.to('cpu')
|
231 |
+
pipe.config.transformer=ll_transformer
|
232 |
+
pipe.config.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
233 |
+
pipe.config.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
234 |
+
pipe.config.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
235 |
seed = random.randint(0, MAX_SEED)
|
236 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
237 |
print('-- generating image --')
|