Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -74,11 +74,12 @@ pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False,
|
|
| 74 |
|
| 75 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 76 |
#vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
|
| 77 |
-
vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, subfolder='vae', low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True)
|
| 78 |
pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 79 |
#"stabilityai # stable-diffusion-3.5-large",
|
| 80 |
-
"ford442/stable-diffusion-3.5-large-bf16",
|
| 81 |
-
|
|
|
|
| 82 |
#vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
|
| 83 |
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
|
| 84 |
text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
|
@@ -89,19 +90,20 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
| 89 |
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
| 90 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
| 91 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
|
|
|
| 92 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
|
| 93 |
#torch_dtype=torch.bfloat16,
|
| 94 |
#use_safetensors=False,
|
| 95 |
)
|
| 96 |
-
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0")
|
| 97 |
-
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0")
|
| 98 |
-
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-
|
| 99 |
|
| 100 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
| 101 |
|
| 102 |
-
pipe.to(device=device
|
| 103 |
#pipe.to(device)
|
| 104 |
-
pipe.vae=vaeX.to('cpu')
|
| 105 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
|
| 106 |
|
| 107 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 74 |
|
| 75 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 76 |
#vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
|
| 77 |
+
#vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, subfolder='vae', low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True)
|
| 78 |
pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 79 |
#"stabilityai # stable-diffusion-3.5-large",
|
| 80 |
+
#"ford442/stable-diffusion-3.5-large-bf16",
|
| 81 |
+
"ford442/stable-diffusion-3.5-large-fp32",
|
| 82 |
+
#vae=None,
|
| 83 |
#vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
|
| 84 |
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
|
| 85 |
text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
|
|
|
| 90 |
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
| 91 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
| 92 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
| 93 |
+
#tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
|
| 94 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
|
| 95 |
#torch_dtype=torch.bfloat16,
|
| 96 |
#use_safetensors=False,
|
| 97 |
)
|
| 98 |
+
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
|
| 99 |
+
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
|
| 100 |
+
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
|
| 101 |
|
| 102 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
| 103 |
|
| 104 |
+
pipe.to(device=device) #, dtype=torch.bfloat16)
|
| 105 |
#pipe.to(device)
|
| 106 |
+
#pipe.vae=vaeX.to('cpu')
|
| 107 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
|
| 108 |
|
| 109 |
MAX_SEED = np.iinfo(np.int32).max
|