1inkusFace commited on
Commit
9237356
·
verified ·
1 Parent(s): 6eeeb4e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -8
app.py CHANGED
@@ -74,11 +74,12 @@ pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False,
74
 
75
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
76
  #vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
77
- vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, subfolder='vae', low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True)
78
  pipe = StableDiffusion3Pipeline.from_pretrained(
79
  #"stabilityai # stable-diffusion-3.5-large",
80
- "ford442/stable-diffusion-3.5-large-bf16",
81
- vae=None,
 
82
  #vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
83
  #scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
84
  text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
@@ -89,19 +90,20 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
89
  # text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
90
  #tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
91
  #tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
 
92
  tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
93
  #torch_dtype=torch.bfloat16,
94
  #use_safetensors=False,
95
  )
96
- text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
97
- text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
98
- text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
99
 
100
  pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
101
 
102
- pipe.to(device=device, dtype=torch.bfloat16)
103
  #pipe.to(device)
104
- pipe.vae=vaeX.to('cpu')
105
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
106
 
107
  MAX_SEED = np.iinfo(np.int32).max
 
74
 
75
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
76
  #vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
77
+ #vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, subfolder='vae', low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True)
78
  pipe = StableDiffusion3Pipeline.from_pretrained(
79
  #"stabilityai # stable-diffusion-3.5-large",
80
+ #"ford442/stable-diffusion-3.5-large-bf16",
81
+ "ford442/stable-diffusion-3.5-large-fp32",
82
+ #vae=None,
83
  #vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
84
  #scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
85
  text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
 
90
  # text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
91
  #tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
92
  #tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
93
+ #tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
94
  tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
95
  #torch_dtype=torch.bfloat16,
96
  #use_safetensors=False,
97
  )
98
+ text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
99
+ text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
100
+ text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
101
 
102
  pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
103
 
104
+ pipe.to(device=device) #, dtype=torch.bfloat16)
105
  #pipe.to(device)
106
+ #pipe.vae=vaeX.to('cpu')
107
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
108
 
109
  MAX_SEED = np.iinfo(np.int32).max