Spaces:
Sleeping
Sleeping
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
model_name = "Qwen/Qwen2.5-Coder-14B-Instruct" | |
# Load model and tokenizer (outside the function for efficiency) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto", | |
trust_remote_code=True # Add this line for Qwen models | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Add this line for Qwen models | |
def generate_code(prompt): | |
messages = [ | |
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, | |
{"role": "user", "content": prompt} | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
generated_ids = model.generate( | |
**model_inputs, | |
max_new_tokens=512 | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return response | |
# Example usage (optional - remove for Spaces deployment) | |
if __name__ == "__main__": | |
prompt = "write a quick sort algorithm." | |
generated_code = generate_code(prompt) | |
print(generated_code) |