1inkusFace's picture
Update app.py
890d27d verified
raw
history blame
1.45 kB
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "Qwen/Qwen2.5-Coder-14B-Instruct"
# Load model and tokenizer (outside the function for efficiency)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True # Add this line for Qwen models
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Add this line for Qwen models
@spaces.GPU(required=True)
def generate_code(prompt):
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
# Example usage (optional - remove for Spaces deployment)
if __name__ == "__main__":
prompt = "write a quick sort algorithm."
generated_code = generate_code(prompt)
print(generated_code)