Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces # If using Hugging Face Spaces
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
|
6 |
+
os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
7 |
+
alloc_conf_parts = [
|
8 |
+
'expandable_segments:True',
|
9 |
+
'pinned_use_background_threads:True' # Specific to pinned memory.
|
10 |
+
]
|
11 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
|
12 |
+
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
13 |
+
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
|
14 |
+
|
15 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig # Import BitsAndBytesConfig
|
16 |
+
import torch
|
17 |
+
import gradio as gr
|
18 |
+
|
19 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
20 |
+
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
21 |
+
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
22 |
+
torch.backends.cudnn.allow_tf32 = False
|
23 |
+
torch.backends.cudnn.deterministic = False
|
24 |
+
torch.backends.cudnn.benchmark = True
|
25 |
+
torch.set_float32_matmul_precision("highest")
|
26 |
+
|
27 |
+
# --- Model and Tokenizer Configuration ---
|
28 |
+
model_name = "FelixChao/vicuna-33b-coder"
|
29 |
+
|
30 |
+
# --- Quantization Configuration (Example: 4-bit) ---
|
31 |
+
# This section is included based on our previous discussion.
|
32 |
+
# Remove or comment out if you are not using quantization.
|
33 |
+
print("Setting up 4-bit quantization config...")
|
34 |
+
quantization_config_4bit = BitsAndBytesConfig(
|
35 |
+
load_in_4bit=True,
|
36 |
+
bnb_4bit_use_double_quant=True,
|
37 |
+
bnb_4bit_quant_type="nf4",
|
38 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
39 |
+
)
|
40 |
+
|
41 |
+
print(f"Loading model: {model_name} with quantization")
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
model_name,
|
44 |
+
quantization_config=quantization_config_4bit, # Comment out if not using quantization
|
45 |
+
device_map="auto",
|
46 |
+
)
|
47 |
+
|
48 |
+
print(f"Loading tokenizer: {model_name}")
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
50 |
+
model_name,
|
51 |
+
use_fast=True
|
52 |
+
)
|
53 |
+
|
54 |
+
# ** MODIFICATION: Define and set the Vicuna chat template **
|
55 |
+
# ** DOCUMENTATION: Chat Template **
|
56 |
+
# Vicuna models expect a specific chat format. If the tokenizer doesn't have one
|
57 |
+
# built-in, we need to set it manually.
|
58 |
+
# This template handles a system prompt, user messages, and assistant responses.
|
59 |
+
# It will also add the "ASSISTANT:" prompt for generation if needed.
|
60 |
+
VICUNA_CHAT_TEMPLATE = (
|
61 |
+
"{% if messages[0]['role'] == 'system' %}" # Check if the first message is a system prompt
|
62 |
+
"{{ messages[0]['content'] + '\\n\\n' }}" # Add system prompt with two newlines
|
63 |
+
"{% set loop_messages = messages[1:] %}" # Slice to loop over remaining messages
|
64 |
+
"{% else %}"
|
65 |
+
"{% set loop_messages = messages %}" # No system prompt, loop over all messages
|
66 |
+
"{% endif %}"
|
67 |
+
"{% for message in loop_messages %}" # Loop through user and assistant messages
|
68 |
+
"{% if message['role'] == 'user' %}"
|
69 |
+
"{{ 'USER: ' + message['content'].strip() + '\\n' }}"
|
70 |
+
"{% elif message['role'] == 'assistant' %}"
|
71 |
+
"{{ 'ASSISTANT: ' + message['content'].strip() + eos_token + '\\n' }}"
|
72 |
+
"{% endif %}"
|
73 |
+
"{% endfor %}"
|
74 |
+
"{% if add_generation_prompt %}" # If we need to prompt the model for a response
|
75 |
+
"{% if messages[-1]['role'] != 'assistant' %}" # And the last message wasn't from the assistant
|
76 |
+
"{{ 'ASSISTANT:' }}" # Add the assistant prompt
|
77 |
+
"{% endif %}"
|
78 |
+
"{% endif %}"
|
79 |
+
)
|
80 |
+
tokenizer.chat_template = VICUNA_CHAT_TEMPLATE
|
81 |
+
print("Manually set Vicuna chat template on the tokenizer.")
|
82 |
+
|
83 |
+
|
84 |
+
if tokenizer.pad_token is None:
|
85 |
+
tokenizer.pad_token = tokenizer.eos_token
|
86 |
+
# Also update the model config's pad_token_id if you are setting tokenizer.pad_token
|
87 |
+
# This is crucial if the model's config doesn't get updated automatically.
|
88 |
+
if model.config.pad_token_id is None:
|
89 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
90 |
+
print(f"Tokenizer `pad_token` was None, set to `eos_token`: {tokenizer.eos_token}")
|
91 |
+
|
92 |
+
|
93 |
+
@spaces.GPU(required=True)
|
94 |
+
def generate_code(prompt: str) -> str:
|
95 |
+
messages = [
|
96 |
+
{"role": "system", "content": "You are a helpful and proficient coding assistant."},
|
97 |
+
{"role": "user", "content": prompt}
|
98 |
+
]
|
99 |
+
try:
|
100 |
+
# ** DOCUMENTATION: Applying Chat Template **
|
101 |
+
# Now that tokenizer.chat_template is set, this should work.
|
102 |
+
text = tokenizer.apply_chat_template(
|
103 |
+
messages,
|
104 |
+
tokenize=False,
|
105 |
+
add_generation_prompt=True # Important to append "ASSISTANT:"
|
106 |
+
)
|
107 |
+
print(f"Formatted prompt using chat template:\n{text}") # For debugging
|
108 |
+
except Exception as e:
|
109 |
+
print(f"Error applying chat template: {e}")
|
110 |
+
# Provide a more informative error or fallback if needed
|
111 |
+
return f"Error: Could not apply chat template. Details: {e}. Ensure the tokenizer has a valid `chat_template` attribute."
|
112 |
+
|
113 |
+
# Determine device for inputs if model is on multiple devices
|
114 |
+
# For device_map="auto", input tensors should go to the device of the first model block.
|
115 |
+
input_device = model.hf_device_map.get("", next(iter(model.hf_device_map.values()))) if hasattr(model, "hf_device_map") else model.device
|
116 |
+
|
117 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(input_device)
|
118 |
+
|
119 |
+
with torch.no_grad():
|
120 |
+
generated_ids = model.generate(
|
121 |
+
**model_inputs, # Pass tokenized inputs
|
122 |
+
max_new_tokens=1024,
|
123 |
+
min_new_tokens=256,
|
124 |
+
do_sample=True,
|
125 |
+
temperature=0.7,
|
126 |
+
top_p=0.9,
|
127 |
+
pad_token_id=tokenizer.eos_token_id # Use EOS token for padding
|
128 |
+
)
|
129 |
+
|
130 |
+
response_ids = generated_ids[0][len(model_inputs.input_ids[0]):]
|
131 |
+
response = tokenizer.decode(response_ids, skip_special_tokens=True)
|
132 |
+
return response.strip()
|
133 |
+
|
134 |
+
# --- Gradio Interface ---
|
135 |
+
with gr.Blocks(title="Vicuna 33B Coder") as demo:
|
136 |
+
with gr.Tab("Code Chat"):
|
137 |
+
gr.Markdown("# Vicuna 33B Coder\nProvide a prompt to generate code.")
|
138 |
+
with gr.Row():
|
139 |
+
prompt_input = gr.Textbox( # Renamed to avoid conflict with 'prompt' variable in function scope
|
140 |
+
label="Prompt",
|
141 |
+
show_label=True,
|
142 |
+
lines=3,
|
143 |
+
placeholder="Enter your coding prompt here...",
|
144 |
+
)
|
145 |
+
run_button = gr.Button("Generate Code", variant="primary")
|
146 |
+
with gr.Row():
|
147 |
+
result_output = gr.Code( # Renamed
|
148 |
+
label="Generated Code",
|
149 |
+
show_label=True,
|
150 |
+
language="python",
|
151 |
+
lines=20,
|
152 |
+
)
|
153 |
+
gr.on(
|
154 |
+
triggers=[
|
155 |
+
run_button.click,
|
156 |
+
prompt_input.submit
|
157 |
+
],
|
158 |
+
fn=generate_code,
|
159 |
+
inputs=[prompt_input],
|
160 |
+
outputs=[result_output],
|
161 |
+
)
|
162 |
+
|
163 |
+
if __name__ == "__main__":
|
164 |
+
demo.launch(share=False, debug=True)
|