Spaces:
Runtime error
Runtime error
Ivan Shelonik
commited on
Commit
·
df0d440
1
Parent(s):
68ec720
first commit
Browse files- Dockerfile +21 -0
- README.md +1 -0
- api_client.py +70 -0
- api_server.py +111 -0
- artifacts/models/.gitignore +2 -0
- model.py +46 -0
Dockerfile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official Python base image
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the requirements.txt file and install the Python dependencies
|
8 |
+
COPY requirements.txt .
|
9 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
10 |
+
|
11 |
+
# Copy the Flask application code into the container
|
12 |
+
COPY . .
|
13 |
+
|
14 |
+
# Expose the port on which the Flask application will run
|
15 |
+
EXPOSE 5000
|
16 |
+
|
17 |
+
# Set the environment variable for Flask
|
18 |
+
ENV FLASK_APP=app.py
|
19 |
+
|
20 |
+
# Run the Flask application
|
21 |
+
CMD ["flask", "run", "--host=0.0.0.0"]
|
README.md
CHANGED
@@ -4,6 +4,7 @@ emoji: 🐠
|
|
4 |
colorFrom: indigo
|
5 |
colorTo: blue
|
6 |
sdk: docker
|
|
|
7 |
pinned: false
|
8 |
---
|
9 |
|
|
|
4 |
colorFrom: indigo
|
5 |
colorTo: blue
|
6 |
sdk: docker
|
7 |
+
app_port: 5000
|
8 |
pinned: false
|
9 |
---
|
10 |
|
api_client.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import numpy as np
|
4 |
+
import requests
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
# Disable tensorflow warnings
|
8 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
9 |
+
|
10 |
+
from keras.datasets import mnist
|
11 |
+
from typing import List
|
12 |
+
|
13 |
+
|
14 |
+
# Set random seed for reproducibility
|
15 |
+
np.random.seed(50)
|
16 |
+
|
17 |
+
# Number of images taken from test dataset to make prediction
|
18 |
+
N_IMAGES = 9
|
19 |
+
|
20 |
+
def get_image_prediction(image: List):
|
21 |
+
"""Get Model prediction for a given image
|
22 |
+
:param
|
23 |
+
image: List
|
24 |
+
Grayscale Image
|
25 |
+
:return: Json
|
26 |
+
HTTP Response format:
|
27 |
+
{
|
28 |
+
"prediction": predicted_label,
|
29 |
+
"ml-latency-ms": latency_in_milliseconds
|
30 |
+
(Measures time only for ML operations preprocessing with predict)
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
# Making prediction request API
|
34 |
+
response = requests.post(url='http://127.0.0.1:5000/predict', json={'image': image})
|
35 |
+
# Parse the response JSON
|
36 |
+
return response.json()
|
37 |
+
|
38 |
+
# Load the dataset from keras.datasets
|
39 |
+
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
40 |
+
|
41 |
+
# Select N-th (N_IMAGES) random indices from x_test
|
42 |
+
indices = np.random.choice(len(x_test), N_IMAGES, replace=False)
|
43 |
+
|
44 |
+
# Get the images and labels based on the selected indices
|
45 |
+
images, labels, predictions = x_test[indices], y_test[indices], []
|
46 |
+
|
47 |
+
# Iterate over each image, invoke prediction API and save results to predictions array
|
48 |
+
for i in range(N_IMAGES):
|
49 |
+
# Send the POST request to the Flask server
|
50 |
+
start_time = time.time()
|
51 |
+
model_response = get_image_prediction(images[i].tolist())
|
52 |
+
print('Model Response:', model_response)
|
53 |
+
print('Total Measured Time (ms):', round((time.time() - start_time) * 1000, 3))
|
54 |
+
# Save prediction data into predictions array
|
55 |
+
predictions.append(model_response['prediction'])
|
56 |
+
|
57 |
+
def plot_images_and_results_plot(images_, labels_, predictions_):
|
58 |
+
"""Plotting the images with their labels and predictions
|
59 |
+
"""
|
60 |
+
fig, axes = plt.subplots(N_IMAGES, 1, figsize=(6, 10))
|
61 |
+
|
62 |
+
for i in range(N_IMAGES):
|
63 |
+
axes[i].imshow(images_[i], cmap='gray')
|
64 |
+
axes[i].axis('off')
|
65 |
+
axes[i].set_title("Label/Prediction: {}/{}".format(labels_[i], predictions_[i]))
|
66 |
+
|
67 |
+
plt.tight_layout()
|
68 |
+
plt.show()
|
69 |
+
|
70 |
+
plot_images_and_results_plot(images, labels, predictions)
|
api_server.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Disable tensorflow warnings
|
6 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
7 |
+
|
8 |
+
from tensorflow import keras
|
9 |
+
from flask import Flask, jsonify, request
|
10 |
+
|
11 |
+
# Load the saved model into memory
|
12 |
+
model = keras.models.load_model('artifacts/models/mnist_model.h5')
|
13 |
+
|
14 |
+
# Initialize the Flask application
|
15 |
+
app = Flask(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
# API route for prediction
|
19 |
+
@app.route('/predict', methods=['POST'])
|
20 |
+
def predict():
|
21 |
+
"""
|
22 |
+
Predicts the class label of an input image.
|
23 |
+
|
24 |
+
Request format:
|
25 |
+
{
|
26 |
+
"image": [[pixel_values_gray]]
|
27 |
+
}
|
28 |
+
|
29 |
+
Response format:
|
30 |
+
{
|
31 |
+
"prediction": predicted_label,
|
32 |
+
"ml-latency-ms": latency_in_milliseconds
|
33 |
+
(Measures time only for ML operations preprocessing with predict)
|
34 |
+
}
|
35 |
+
"""
|
36 |
+
start_time = time.time()
|
37 |
+
|
38 |
+
# Get the image data from the request
|
39 |
+
image_data = request.get_json()['image']
|
40 |
+
|
41 |
+
# Preprocess the image
|
42 |
+
processed_image = preprocess_image(image_data)
|
43 |
+
|
44 |
+
# Make a prediction, verbose=0 to disable progress bar in logs
|
45 |
+
prediction = model.predict(processed_image, verbose=0)
|
46 |
+
|
47 |
+
# Get the predicted class label
|
48 |
+
predicted_label = np.argmax(prediction)
|
49 |
+
|
50 |
+
# Calculate latency in milliseconds
|
51 |
+
latency_ms = (time.time() - start_time) * 1000
|
52 |
+
|
53 |
+
# Return the prediction result and latency as JSON response
|
54 |
+
response = {'prediction': int(predicted_label),
|
55 |
+
'ml-latency-ms': round(latency_ms, 4)}
|
56 |
+
|
57 |
+
# dictionary is not a JSON: https://www.quora.com/What-is-the-difference-between-JSON-and-a-dictionary
|
58 |
+
# flask.jsonify vs json.dumps https://sentry.io/answers/difference-between-json-dumps-and-flask-jsonify/
|
59 |
+
# The flask.jsonify() function returns a Response object with Serializable JSON and content_type=application/json.
|
60 |
+
return jsonify(response)
|
61 |
+
|
62 |
+
|
63 |
+
# Helper function to preprocess the image
|
64 |
+
def preprocess_image(image_data):
|
65 |
+
"""Preprocess image for Model Inference
|
66 |
+
|
67 |
+
:param image_data: Raw image
|
68 |
+
:return: image: Preprocessed Image
|
69 |
+
"""
|
70 |
+
# Resize the image to match the input shape of the model
|
71 |
+
image = np.array(image_data).reshape(1, 28, 28)
|
72 |
+
|
73 |
+
# Normalize the pixel values
|
74 |
+
image = image.astype('float32') / 255.0
|
75 |
+
|
76 |
+
return image
|
77 |
+
|
78 |
+
|
79 |
+
# API route for health check
|
80 |
+
@app.route('/health', methods=['GET'])
|
81 |
+
def health():
|
82 |
+
"""
|
83 |
+
Health check API to ensure the application is running.
|
84 |
+
Returns "OK" if the application is healthy.
|
85 |
+
Demo Usage: "curl http://localhost:5000/health" or using alias "curl http://127.0.0.1:5000/health"
|
86 |
+
"""
|
87 |
+
return 'OK'
|
88 |
+
|
89 |
+
|
90 |
+
# API route for version
|
91 |
+
@app.route('/version', methods=['GET'])
|
92 |
+
def version():
|
93 |
+
"""
|
94 |
+
Returns the version of the application.
|
95 |
+
Demo Usage: "curl http://127.0.0.1:5000/version" or using alias "curl http://127.0.0.1:5000/version"
|
96 |
+
"""
|
97 |
+
return '1.0'
|
98 |
+
|
99 |
+
|
100 |
+
# Start the Flask application
|
101 |
+
if __name__ == '__main__':
|
102 |
+
app.run()
|
103 |
+
|
104 |
+
|
105 |
+
##################
|
106 |
+
# Flask API usages:
|
107 |
+
# 1. Just a wrapper over OpenAI API
|
108 |
+
# 2. You can use Chain calls of OpenAI API
|
109 |
+
# 3. Using your own ML model in combination with openAPI functionality
|
110 |
+
# 4. ...
|
111 |
+
##################
|
artifacts/models/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
model.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# disable tensorflow warnings
|
6 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
7 |
+
|
8 |
+
import tensorflow as tf
|
9 |
+
from tensorflow import keras
|
10 |
+
from keras.datasets import mnist
|
11 |
+
|
12 |
+
# Set the random seed for reproducibility, remember these lines :)
|
13 |
+
SEED = 42
|
14 |
+
random.seed(SEED)
|
15 |
+
np.random.seed(SEED)
|
16 |
+
tf.random.set_seed(SEED)
|
17 |
+
|
18 |
+
# Load the dataset from keras.datasets (so noone would need to download it manually from any sources)
|
19 |
+
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
20 |
+
|
21 |
+
# Preprocess the dataset
|
22 |
+
x_train = x_train.astype('float32') / 255.0
|
23 |
+
x_test = x_test.astype('float32') / 255.0
|
24 |
+
|
25 |
+
# Define the model architecture
|
26 |
+
model = keras.Sequential([
|
27 |
+
keras.layers.Flatten(input_shape=(28, 28)),
|
28 |
+
keras.layers.Dense(128, activation='relu'),
|
29 |
+
keras.layers.Dense(10, activation='softmax')
|
30 |
+
])
|
31 |
+
|
32 |
+
# Compile and train the model
|
33 |
+
# target in one-hot categorical_crossentropy -> [0,0,1,0,0,0,0,0,0]
|
34 |
+
# target can be as integer sparse_categorical_crossentropy -> 3
|
35 |
+
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
36 |
+
|
37 |
+
# 4-epoch is overfitting, 3-rd is okay
|
38 |
+
model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=4, shuffle=True, batch_size=32)
|
39 |
+
|
40 |
+
# Evaluate the model
|
41 |
+
print('\n')
|
42 |
+
_, test_accuracy = model.evaluate(x_test, y_test)
|
43 |
+
print('Test accuracy:', test_accuracy)
|
44 |
+
|
45 |
+
# Save the model
|
46 |
+
model.save('artifacts/models/mnist_model.h5')
|