Upload 4 files
Browse files- .gitattributes +1 -0
- model_breath_logspec_mfcc_cnn.tflite +3 -0
- requirements.txt +5 -0
- streamlit_App.py +109 -0
- temp_audio_file.wav +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
temp_audio_file.wav filter=lfs diff=lfs merge=lfs -text
|
model_breath_logspec_mfcc_cnn.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fea718318cecbaaded6f0061747c58e61006ec133550626e3466478f5203c97
|
3 |
+
size 137115984
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.26.0
|
2 |
+
librosa==0.10.1
|
3 |
+
tensorflow==2.19.0
|
4 |
+
streamlit==1.43.2
|
5 |
+
|
streamlit_App.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import librosa
|
3 |
+
import tensorflow as tf
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
window_length = 0.02 # 20ms window length
|
7 |
+
hop_length = 0.0025 # 2.5ms hop length
|
8 |
+
sample_rate = 22050 # Standard audio sample rate
|
9 |
+
n_mels = 128 # Number of mel filter banks
|
10 |
+
threshold_zcr = 0.1 # Adjust this threshold to detect breath based on ZCR
|
11 |
+
threshold_rmse = 0.1 # Adjust this threshold to detect breath based on RMSE
|
12 |
+
|
13 |
+
def extract_breath_features(y, sr):
|
14 |
+
frame_length = int(window_length * sr)
|
15 |
+
hop_length_samples = int(hop_length * sr)
|
16 |
+
|
17 |
+
zcr = librosa.feature.zero_crossing_rate(y=y, frame_length=frame_length, hop_length=hop_length_samples)
|
18 |
+
rmse = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length_samples)
|
19 |
+
|
20 |
+
zcr = zcr.T.flatten()
|
21 |
+
rmse = rmse.T.flatten()
|
22 |
+
|
23 |
+
# Calculate breath events
|
24 |
+
breaths = (zcr > threshold_zcr) & (rmse > threshold_rmse)
|
25 |
+
|
26 |
+
# Create a breath feature: 1 if breath is present, else 0
|
27 |
+
breath_feature = np.where(breaths, 1, 0)
|
28 |
+
|
29 |
+
return breath_feature
|
30 |
+
|
31 |
+
def extract_features(file_path, n_mels=128, n_cqt=84, max_len=500, n_mfcc=13):
|
32 |
+
try:
|
33 |
+
y, sr = librosa.load(file_path, sr=None)
|
34 |
+
|
35 |
+
# Compute MFCC
|
36 |
+
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=n_mfcc)
|
37 |
+
mfcc = librosa.util.fix_length(mfcc, size=max_len, axis=1) # Fix length
|
38 |
+
|
39 |
+
# Compute log-mel spectrogram
|
40 |
+
logspec = librosa.amplitude_to_db(librosa.feature.melspectrogram(y=y, sr=sr, n_mels=n_mels))
|
41 |
+
logspec = librosa.util.fix_length(logspec, size=max_len, axis=1) # Fix length
|
42 |
+
|
43 |
+
# Extract breath features
|
44 |
+
breath_feature = extract_breath_features(y, sr)
|
45 |
+
breath_feature = librosa.util.fix_length(breath_feature, size=max_len) # Fix length
|
46 |
+
|
47 |
+
# Stack features vertically
|
48 |
+
return np.vstack((mfcc,logspec, breath_feature))
|
49 |
+
except Exception as e:
|
50 |
+
print(f"Error loading {file_path}: {e}")
|
51 |
+
return None
|
52 |
+
|
53 |
+
# Function to prepare the features for prediction
|
54 |
+
def prepare_single_data(features, max_len=500):
|
55 |
+
features = librosa.util.fix_length(features, size=max_len, axis=1)
|
56 |
+
features = features[np.newaxis, ..., np.newaxis] # Add batch and channel dimensions
|
57 |
+
return features
|
58 |
+
|
59 |
+
# Load the saved TensorFlow Lite model
|
60 |
+
interpreter = tf.lite.Interpreter(model_path=r"model_breath_logspec_mfcc_cnn.tflite")
|
61 |
+
interpreter.allocate_tensors()
|
62 |
+
|
63 |
+
# Get input and output details
|
64 |
+
input_details = interpreter.get_input_details()
|
65 |
+
output_details = interpreter.get_output_details()
|
66 |
+
|
67 |
+
# Function to predict audio class
|
68 |
+
def predict_audio(file_path):
|
69 |
+
features = extract_features(file_path)
|
70 |
+
if features is not None:
|
71 |
+
prepared_features = prepare_single_data(features)
|
72 |
+
# Ensure the prepared features are of type FLOAT32
|
73 |
+
prepared_features = prepared_features.astype(np.float32) # Convert to FLOAT32
|
74 |
+
# Set the tensor to the prepared input data
|
75 |
+
interpreter.set_tensor(input_details[0]['index'], prepared_features)
|
76 |
+
interpreter.invoke()
|
77 |
+
# Get the prediction result
|
78 |
+
prediction = interpreter.get_tensor(output_details[0]['index'])
|
79 |
+
predicted_class = np.argmax(prediction, axis=1)
|
80 |
+
predicted_prob = prediction[0] # Get the probabilities for EER calculation
|
81 |
+
return predicted_class[0], predicted_prob # Return class index and probabilities
|
82 |
+
else:
|
83 |
+
return None, None
|
84 |
+
|
85 |
+
# Streamlit app
|
86 |
+
st.title('Audio Classification: Real vs Fake')
|
87 |
+
st.write('Upload an audio file to classify it as real or fake.')
|
88 |
+
|
89 |
+
# File uploader
|
90 |
+
uploaded_file = st.file_uploader('Choose an audio file', type=['wav', 'mp3'])
|
91 |
+
|
92 |
+
if uploaded_file is not None:
|
93 |
+
# Save the uploaded file temporarily
|
94 |
+
with open('temp_audio_file.wav', 'wb') as f:
|
95 |
+
f.write(uploaded_file.getbuffer())
|
96 |
+
|
97 |
+
|
98 |
+
# Predict using the loaded model
|
99 |
+
prediction,probablity = predict_audio('temp_audio_file.wav')
|
100 |
+
st.write(f'Predicted class is {prediction} \n')
|
101 |
+
st.write(f'Probability of being real: {probablity[0]*100:.2f}% \n')
|
102 |
+
st.write(f'Probability of being fake: {probablity[1]*100:.2f}% \n')
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
temp_audio_file.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:160a44a876905d90490a048202b70ca8e5685375fa14ed69280948157486e475
|
3 |
+
size 2044844
|