File size: 14,678 Bytes
d26c7f3
 
 
cc6bd3b
d26c7f3
 
cc6bd3b
d26c7f3
 
cc6bd3b
d26c7f3
 
851947c
cc6bd3b
851947c
 
cc6bd3b
 
 
851947c
cc6bd3b
851947c
cc6bd3b
 
851947c
 
 
 
 
 
 
cc6bd3b
d26c7f3
cc6bd3b
851947c
 
 
 
 
 
 
 
 
cc6bd3b
 
 
 
 
 
 
 
 
 
 
 
851947c
cc6bd3b
851947c
 
cc6bd3b
 
 
851947c
cc6bd3b
851947c
 
 
 
cc6bd3b
851947c
 
 
 
 
 
 
 
 
cc6bd3b
 
851947c
 
 
 
 
 
 
 
 
cc6bd3b
 
 
 
851947c
 
 
 
 
 
 
cc6bd3b
851947c
d26c7f3
851947c
 
d26c7f3
 
 
851947c
cc6bd3b
d26c7f3
 
851947c
 
 
 
 
 
d26c7f3
 
 
 
851947c
 
 
d26c7f3
851947c
 
 
 
 
 
 
d26c7f3
 
 
851947c
 
 
 
 
 
 
 
 
d26c7f3
 
 
 
cc6bd3b
 
 
 
851947c
cc6bd3b
 
851947c
 
 
cc6bd3b
d26c7f3
851947c
d26c7f3
851947c
 
d26c7f3
 
 
851947c
cc6bd3b
d26c7f3
851947c
 
 
 
d26c7f3
 
 
851947c
 
d26c7f3
851947c
 
 
 
 
 
 
d26c7f3
 
 
851947c
 
 
 
 
 
 
 
 
d26c7f3
 
 
 
851947c
 
 
 
 
 
 
 
 
d26c7f3
851947c
d26c7f3
851947c
 
d26c7f3
 
 
851947c
cc6bd3b
851947c
d26c7f3
 
 
851947c
 
 
 
 
 
 
 
 
d26c7f3
 
 
 
851947c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d26c7f3
 
851947c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d26c7f3
 
851947c
 
 
 
 
 
 
 
 
 
 
 
d26c7f3
851947c
 
 
 
d26c7f3
851947c
 
 
 
 
 
 
d26c7f3
 
851947c
d26c7f3
851947c
 
d26c7f3
 
 
851947c
cc6bd3b
d26c7f3
 
851947c
 
 
 
 
 
 
d26c7f3
 
 
 
851947c
 
 
 
 
 
 
 
d26c7f3
851947c
 
 
d26c7f3
851947c
 
 
 
d26c7f3
851947c
d26c7f3
851947c
d26c7f3
 
851947c
d26c7f3
 
851947c
d26c7f3
851947c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.tools import FunctionTool
from llama_index.core.workflow import Context

import asyncio
import os

from llm_factory import LLMFactory
from toolbox import Toolbox
from args import Args


class Summarizer:
    def __init__(self, temperature, max_tokens):
        # Load the system prompt from a file
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "04_summarizer.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        # Define the LLM and agent
        llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
        self.agent = AgentWorkflow.setup_agent(llm=llm)
        self.ctx = Context(self.agent)
    
    def get_system_prompt(self) -> str:
        """
        Retrieves the system prompt.

        Returns:
            str: The system prompt string.
        """
        return self.system_prompt

    async def query(self, question: str) -> str:
        """
        Asynchronously queries the agent with a given question and returns the response.

        Args:
            question (str): The question to be sent to the agent.

        Returns:
            str: The response from the agent as a string.
        """
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response

    def clear_context(self):
        """
        Clears the current context of the agent, resetting any conversation history.
        This is useful when starting a new conversation or when the context needs to be refreshed.
        """
        self.ctx = Context(self.agent)


class Researcher:
    def __init__(self, temperature, max_tokens):
        # Load the system prompt from a file
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "05_researcher.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        # Define the LLM and agent
        llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
        self.agent = AgentWorkflow.from_tools_or_functions(
            Toolbox.web_search.duck_duck_go_tools,
            llm=llm
        )
        self.ctx = Context(self.agent)
    
    def get_system_prompt(self) -> str:
        """
        Retrieves the system prompt.

        Returns:
            str: The system prompt string.
        """
        return self.system_prompt

    async def query(self, question: str) -> str:
        """
        Asynchronously queries the agent with a given question and returns the response.

        Args:
            question (str): The question to be sent to the agent.

        Returns:
            str: The response from the agent as a string.
        """
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response

    def clear_context(self):
        """
        Clears the current context of the agent, resetting any conversation history.
        This is useful when starting a new conversation or when the context needs to be refreshed.
        """
        self.ctx = Context(self.agent)


class EncryptionExpert:
    def __init__(self, temperature, max_tokens):
        # Load the system prompt from a file
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "06_encryption_expert.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        # Define the LLM and agent
        llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
        self.agent = AgentWorkflow.from_tools_or_functions(
            [
                Toolbox.encryption.base64_encode,
                Toolbox.encryption.base64_decode,
                Toolbox.encryption.caesar_cipher_encode,
                Toolbox.encryption.caesar_cipher_decode,
                Toolbox.encryption.reverse_string
                # TODO: Add more encryption tools
            ],
            llm=llm
        )
        self.ctx = Context(self.agent)
        # Initialize the tool agents
        self.math_expert = MathExpert(temperature, max_tokens)
        self.reasoner = Reasoner(temperature, max_tokens)
    
    def get_system_prompt(self) -> str:
        """
        Retrieves the system prompt.

        Returns:
            str: The system prompt string.
        """
        return self.system_prompt

    async def query(self, question: str) -> str:
        """
        Asynchronously queries the agent with a given question and returns the response.

        Args:
            question (str): The question to be sent to the agent.

        Returns:
            str: The response from the agent as a string.
        """
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response

    def clear_context(self):
        """
        Clears the current context of the agent, resetting any conversation history.
        This is useful when starting a new conversation or when the context needs to be refreshed.
        Also clears the context of any tool agents.
        """
        self.ctx = Context(self.agent)
        # Clear context for tool agents
        self.math_expert.clear_context()
        self.reasoner.clear_context()


class MathExpert:
    def __init__(self, temperature, max_tokens):
        # Load the system prompt from a file
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "07_math_expert.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        # Define the LLM and agent
        llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
        self.agent = AgentWorkflow.from_tools_or_functions(
            [
            Toolbox.math.symbolic_calc,
            Toolbox.math.unit_converter,
            ],
            llm=llm
        )
        self.ctx = Context(self.agent)
        # Initialize the tool agents
        self.reasoner = Reasoner(temperature, max_tokens)
    
    def get_system_prompt(self) -> str:
        """
        Retrieves the system prompt.

        Returns:
            str: The system prompt string.
        """
        return self.system_prompt

    async def query(self, question: str) -> str:
        """
        Asynchronously queries the agent with a given question and returns the response.

        Args:
            question (str): The question to be sent to the agent.

        Returns:
            str: The response from the agent as a string.
        """
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response

    def clear_context(self):
        """
        Clears the current context of the agent, resetting any conversation history.
        This is useful when starting a new conversation or when the context needs to be refreshed.
        Also clears the context of any tool agents.
        """
        self.ctx = Context(self.agent)
        self.reasoner.clear_context()


class Reasoner:
    def __init__(self, temperature, max_tokens):
        # Load the system prompt from a file
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "08_reasoner.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        # Define the LLM and agent
        llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
        self.agent = AgentWorkflow.setup_agent(llm=llm)
        self.ctx = Context(self.agent)

    async def query(self, question: str) -> str:
        """
        Asynchronously queries the agent with a given question and returns the response.

        Args:
            question (str): The question to be sent to the agent.

        Returns:
            str: The response from the agent as a string.
        """
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response

    def get_system_prompt(self) -> str:
        """
        Retrieves the system prompt.

        Returns:
            str: The system prompt string.
        """
        return self.system_prompt
    
    def clear_context(self):
        """
        Clears the current context of the agent, resetting any conversation history.
        This is useful when starting a new conversation or when the context needs to be refreshed.
        """
        self.ctx = Context(self.agent)


class ImageHandler:
    def __init__(self, temperature, max_tokens):
        # Load the system prompt from a file
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "09_image_handler.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        pass

    def get_system_prompt(self) -> str:
        """
        Retrieves the system prompt.

        Returns:
            str: The system prompt string.
        """
        return self.system_prompt

    def clear_context(self):
        """
        Clears the current context of the agent, resetting any conversation history.
        This is useful when starting a new conversation or when the context needs to be refreshed.
        """
        if hasattr(self, 'ctx') and hasattr(self, 'agent'):
            self.ctx = Context(self.agent)


class VideoHandler:
    def __init__(self, temperature, max_tokens):
        # Load the system prompt from a file
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "10_video_handler.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        # No implementation yet
        pass
    
    def get_system_prompt(self) -> str:
        """
        Retrieves the system prompt.

        Returns:
            str: The system prompt string.
        """
        return self.system_prompt

    def clear_context(self):
        """
        Clears the current context of the agent, resetting any conversation history.
        This is useful when starting a new conversation or when the context needs to be refreshed.
        """
        if hasattr(self, 'ctx') and hasattr(self, 'agent'):
            self.ctx = Context(self.agent)


class Solver:
    def __init__(self, temperature, max_tokens):
        # Load the system prompt from a file
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "03_solver.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        # Define the LLM and agent
        llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
        self.agent = AgentWorkflow.from_tools_or_functions(
            [
            self.call_summarizer,
            self.call_researcher,
            self.call_encryption_expert,
            self.call_math_expert,
            self.call_reasoner,
            self.call_image_handler,
            self.call_video_handler
            ],
            llm=llm
        )
        self.ctx = Context(self.agent)
        # Initialize the tool agents
        self.summarizer = Summarizer(temperature, max_tokens)
        self.researcher = Researcher(temperature, max_tokens)
        self.encryption_expert = EncryptionExpert(temperature, max_tokens)
        self.math_expert = MathExpert(temperature, max_tokens)
        self.reasoner = Reasoner(temperature, max_tokens)
        self.image_handler = ImageHandler(temperature, max_tokens)
        self.video_handler = VideoHandler(temperature, max_tokens)
    
    def get_system_prompt(self) -> str:
        """
        Retrieves the system prompt.

        Returns:
            str: The system prompt string.
        """
        return self.system_prompt

    async def query(self, question: str) -> str:
        """
        Asynchronously queries the agent with a given question and returns the response.

        Args:
            question (str): The question to be sent to the agent.

        Returns:
            str: The response from the agent as a string.
        """
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response

    def clear_context(self):
        """
        Clears the current context of the agent, resetting any conversation history.
        This is useful when starting a new conversation or when the context needs to be refreshed.
        Also clears the context of all tool agents.
        """
        self.ctx = Context(self.agent)
        # Clear context for all tool agents
        self.summarizer.clear_context()
        self.researcher.clear_context()
        self.encryption_expert.clear_context()
        self.math_expert.clear_context()
        self.reasoner.clear_context()
        self.image_handler.clear_context()
        self.video_handler.clear_context()

    async def call_summarizer(self, question: str) -> str:
        return await self.summarizer.query(question)

    async def call_researcher(self, question: str) -> str:
        return await self.researcher.query(question)

    async def call_encryption_expert(self, question: str) -> str:
        return await self.encryption_expert.query(question)

    async def call_math_expert(self, question: str) -> str:
        return await self.math_expert.query(question)

    async def call_reasoner(self, question: str) -> str:
        return await self.reasoner.query(question)

    async def call_image_handler(self, question: str) -> str:
        # ImageHandler may not have a query method yet, but following the pattern
        if hasattr(self.image_handler, 'query'):
            return await self.image_handler.query(question)
        return "Image handling is not implemented yet."
        # TODO

    async def call_video_handler(self, question: str) -> str:
        # VideoHandler may not have a query method yet, but following the pattern
        if hasattr(self.video_handler, 'query'):
            return await self.video_handler.query(question)
        return "Video handling is not implemented yet."
        # TODO


# if __name__ == "__main__":
#     pass