Spaces:
Sleeping
Sleeping
File size: 8,047 Bytes
d26c7f3 cc6bd3b d26c7f3 cc6bd3b d26c7f3 cc6bd3b d26c7f3 cc6bd3b d26c7f3 cc6bd3b d26c7f3 cc6bd3b d26c7f3 cc6bd3b d26c7f3 cc6bd3b d26c7f3 cc6bd3b d26c7f3 cc6bd3b d26c7f3 cc6bd3b d26c7f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.tools import FunctionTool
from llama_index.core.workflow import Context
import asyncio
import os
from llm_factory import LLMFactory
from toolbox import Toolbox
from args import Args
class Solver:
def __init__(self, temperature, max_tokens):
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "06_math_expert.txt")
self.system_prompt = ""
with open(system_prompt_path, "r") as file:
self.system_prompt = file.read().strip()
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
self.agent = AgentWorkflow.from_tools_or_functions(
[
Toolbox.math.symbolic_calc,
Toolbox.math.unit_converter,
],
llm=llm
)
self.ctx = Context(self.agent)
def get_system_prompt(self):
return self.system_prompt
async def query(self, question: str) -> str:
response = await self.agent.run(question, ctx=self.ctx)
response = str(response)
return response
def clear_context(self):
"""
Clears the current context of the agent, resetting any conversation history.
This is useful when starting a new conversation or when the context needs to be refreshed.
"""
self.ctx = Context(self.agent)
class Summarizer:
def __init__(self, temperature, max_tokens):
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "01_assistant.txt")
self.system_prompt = ""
with open(system_prompt_path, "r") as file:
self.system_prompt = file.read().strip()
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
self.agent = AgentWorkflow.setup_agent(llm=llm)
self.ctx = Context(self.agent)
async def query(self, question: str) -> str:
response = await self.agent.run(question, ctx=self.ctx)
response = str(response)
return response
class MathExpert:
def __init__(self, temperature, max_tokens):
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "06_math_expert.txt")
self.system_prompt = ""
with open(system_prompt_path, "r") as file:
self.system_prompt = file.read().strip()
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
self.agent = AgentWorkflow.from_tools_or_functions(
[
Toolbox.math.symbolic_calc,
Toolbox.math.unit_converter,
],
llm=llm
)
self.ctx = Context(self.agent)
def get_system_prompt(self):
return self.system_prompt
async def query(self, question: str) -> str:
response = await self.agent.run(question, ctx=self.ctx)
response = str(response)
return response
def clear_context(self):
"""
Clears the current context of the agent, resetting any conversation history.
This is useful when starting a new conversation or when the context needs to be refreshed.
"""
self.ctx = Context(self.agent)
class Researcher:
def __init__(self, temperature, max_tokens):
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "04_researcher.txt")
self.system_prompt = ""
with open(system_prompt_path, "r") as file:
self.system_prompt = file.read().strip()
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
self.agent = AgentWorkflow.from_tools_or_functions(
Toolbox.web_search.duck_duck_go_tools,
llm=llm
)
self.ctx = Context(self.agent)
def get_system_prompt(self):
return self.system_prompt
async def query(self, question: str) -> str:
response = await self.agent.run(question, ctx=self.ctx)
response = str(response)
return response
class EncryptionExpert:
def __init__(self, temperature, max_tokens):
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "05_encryption_expert.txt")
self.system_prompt = ""
with open(system_prompt_path, "r") as file:
self.system_prompt = file.read().strip()
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
self.agent = AgentWorkflow.from_tools_or_functions(
[
Toolbox.encryption.base64_encode,
Toolbox.encryption.base64_decode,
Toolbox.encryption.caesar_cipher_encode,
Toolbox.encryption.caesar_cipher_decode,
Toolbox.encryption.reverse_string
],
llm=llm
)
self.ctx = Context(self.agent)
def get_system_prompt(self):
return self.system_prompt
async def query(self, question: str) -> str:
response = await self.agent.run(question, ctx=self.ctx)
response = str(response)
return response
class ImageHandler:
pass
class VideoHandler:
pass
class RecursiveSolverAgent:
pass
class Solver_2:
def __init__(self, temperature, max_tokens):
print("Agent initialized.")
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "01_assistant.txt")
self.system_prompt = ""
with open(system_prompt_path, "r") as file:
self.system_prompt = file.read().strip()
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
self.agent = AgentWorkflow.from_tools_or_functions(
[
FunctionTool.from_defaults(self.delegate_to_math_expert),
FunctionTool.from_defaults(self.set_final_answer)
],
llm=llm
)
self.ctx = Context(self.agent)
self.final_answer = ""
async def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
self.final_answer = ""
response = await self.query(question)
print(f"Agent processed the response: {response}")
if self.final_answer == "":
response = await self.query("I noticed the final_answer is an empty string. Have you forgot to set the final_answer ?")
return self.final_answer
def get_system_prompt(self):
return self.system_prompt
async def query(self, question: str) -> str:
response = await self.agent.run(question, ctx=self.ctx)
response = str(response)
final_answer = response
self.set_final_answer(final_answer)
return response
def set_final_answer(self, final_answer: str) -> str:
"""
Sets the final answer for the current querry.
Args:
final_answer (str): The final answer to be set for the agent.
Returns:
str: The final answer that was set.
"""
print("-> set_final_answer !")
self.final_answer = final_answer
def delegate_to_math_expert(self, question: str) -> str:
print("-> delegated to math agent !")
math_agent = MathExpert(temperature=0.7, max_tokens=100)
return math_agent.query(question)
if __name__ == "__main__":
encryption_agent = EncryptionExpert(temperature=0.7, max_tokens=2000)
# encryption_query = "Descifer this: 'Bmfy bfx ymj wjxzqy gjybjjs z-hqzo fsi zsnajwxnyfyjf-hwfntaf ns fuwnq 2025 ?'"
encryption_query = ".rewsna eht sa ""tfel"" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI"
# print(encryption_agent.get_system_prompt())
# encoding = encryption_agent.caesar_cipher_encode(encryption_query, 5)
# print(encoding)
# print(encryption_agent.caesar_cipher_decode(encoding, 5))
print(asyncio.run(encryption_agent.query(encryption_query)))
|