File size: 8,047 Bytes
d26c7f3
 
 
cc6bd3b
d26c7f3
 
cc6bd3b
d26c7f3
 
cc6bd3b
d26c7f3
 
cc6bd3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d26c7f3
cc6bd3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d26c7f3
 
 
 
 
cc6bd3b
d26c7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc6bd3b
 
 
 
 
 
 
d26c7f3
 
 
 
 
 
 
cc6bd3b
d26c7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc6bd3b
d26c7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc6bd3b
d26c7f3
 
 
 
 
 
 
cc6bd3b
d26c7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.tools import FunctionTool
from llama_index.core.workflow import Context

import asyncio
import os

from llm_factory import LLMFactory
from toolbox import Toolbox
from args import Args


class Solver:
    def __init__(self, temperature, max_tokens):
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "06_math_expert.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
        self.agent = AgentWorkflow.from_tools_or_functions(
            [
            Toolbox.math.symbolic_calc,
            Toolbox.math.unit_converter,
            ],
            llm=llm
        )
        self.ctx = Context(self.agent)
    
    def get_system_prompt(self):
        return self.system_prompt

    async def query(self, question: str) -> str:
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response

    def clear_context(self):
        """
        Clears the current context of the agent, resetting any conversation history.
        This is useful when starting a new conversation or when the context needs to be refreshed.
        """
        self.ctx = Context(self.agent)


class Summarizer:
    def __init__(self, temperature, max_tokens):
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "01_assistant.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
        self.agent = AgentWorkflow.setup_agent(llm=llm)
        self.ctx = Context(self.agent)

    async def query(self, question: str) -> str:
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response


class MathExpert:
    def __init__(self, temperature, max_tokens):
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "06_math_expert.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
        self.agent = AgentWorkflow.from_tools_or_functions(
            [
            Toolbox.math.symbolic_calc,
            Toolbox.math.unit_converter,
            ],
            llm=llm
        )
        self.ctx = Context(self.agent)
    
    def get_system_prompt(self):
        return self.system_prompt

    async def query(self, question: str) -> str:
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response

    def clear_context(self):
        """
        Clears the current context of the agent, resetting any conversation history.
        This is useful when starting a new conversation or when the context needs to be refreshed.
        """
        self.ctx = Context(self.agent)


class Researcher:
    def __init__(self, temperature, max_tokens):
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "04_researcher.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
        
        self.agent = AgentWorkflow.from_tools_or_functions(
            Toolbox.web_search.duck_duck_go_tools,
            llm=llm
        )
        self.ctx = Context(self.agent)
    
    def get_system_prompt(self):
        return self.system_prompt

    async def query(self, question: str) -> str:
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response


class EncryptionExpert:
    def __init__(self, temperature, max_tokens):
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "05_encryption_expert.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
        
        self.agent = AgentWorkflow.from_tools_or_functions(
            [
                Toolbox.encryption.base64_encode,
                Toolbox.encryption.base64_decode,
                Toolbox.encryption.caesar_cipher_encode,
                Toolbox.encryption.caesar_cipher_decode,
                Toolbox.encryption.reverse_string
            ],
            llm=llm
        )
        self.ctx = Context(self.agent)
    
    def get_system_prompt(self):
        return self.system_prompt

    async def query(self, question: str) -> str:
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response


class ImageHandler:
    pass

class VideoHandler:
    pass

class RecursiveSolverAgent:
    pass


class Solver_2:

    def __init__(self, temperature, max_tokens):
        print("Agent initialized.")
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "01_assistant.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
        self.agent = AgentWorkflow.from_tools_or_functions(
            [
            FunctionTool.from_defaults(self.delegate_to_math_expert),
            FunctionTool.from_defaults(self.set_final_answer)
            ],
            llm=llm
        )
        self.ctx = Context(self.agent)
        self.final_answer = ""

    async def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        self.final_answer = ""
        response = await self.query(question)
        print(f"Agent processed the response: {response}")
        if self.final_answer == "":
            response = await self.query("I noticed the final_answer is an empty string. Have you forgot to set the final_answer ?")
        return self.final_answer

    def get_system_prompt(self):
        return self.system_prompt
    
    async def query(self, question: str) -> str:
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)

        final_answer = response

        self.set_final_answer(final_answer)
        return response
    
    def set_final_answer(self, final_answer: str) -> str:
        """
        Sets the final answer for the current querry.

        Args:
            final_answer (str): The final answer to be set for the agent.

        Returns:
            str: The final answer that was set.
        """
        print("-> set_final_answer !")
        self.final_answer = final_answer
    
    def delegate_to_math_expert(self, question: str) -> str:
        print("-> delegated to math agent !")
        math_agent = MathExpert(temperature=0.7, max_tokens=100)
        return math_agent.query(question)


if __name__ == "__main__":
    encryption_agent = EncryptionExpert(temperature=0.7, max_tokens=2000)
    # encryption_query = "Descifer this: 'Bmfy bfx ymj wjxzqy gjybjjs z-hqzo fsi zsnajwxnyfyjf-hwfntaf ns fuwnq 2025 ?'"
    encryption_query = ".rewsna eht sa ""tfel"" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI"
    # print(encryption_agent.get_system_prompt())
    # encoding = encryption_agent.caesar_cipher_encode(encryption_query, 5)
    # print(encoding)
    # print(encryption_agent.caesar_cipher_decode(encoding, 5))
    print(asyncio.run(encryption_agent.query(encryption_query)))