File size: 5,802 Bytes
d26c7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.tools import FunctionTool
from llama_index.core.workflow import Context
import asyncio
import os
from llm_factory import LLMFactory
from toolbox import Toolbox


class MathExpert:

    def __init__(self, temperature, max_tokens):
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "06_math_expert.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        llm = LLMFactory.create(self.system_prompt, temperature, max_tokens)
        self.agent = AgentWorkflow.from_tools_or_functions(
            [
            Toolbox.math.symbolic_calc,
            Toolbox.math.unit_converter,
            ],
            llm=llm
        )
        self.ctx = Context(self.agent)
    
    def get_system_prompt(self):
        return self.system_prompt

    async def query(self, question: str) -> str:
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response


class Researcher:
    def __init__(self, temperature, max_tokens):
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "04_researcher.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        llm = LLMFactory.create(self.system_prompt, temperature, max_tokens)
        
        self.agent = AgentWorkflow.from_tools_or_functions(
            Toolbox.web_search.duck_duck_go_tools,
            llm=llm
        )
        self.ctx = Context(self.agent)
    
    def get_system_prompt(self):
        return self.system_prompt

    async def query(self, question: str) -> str:
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response


class EncryptionExpert:
    def __init__(self, temperature, max_tokens):
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "05_encryption_expert.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        llm = LLMFactory.create(self.system_prompt, temperature, max_tokens)
        
        self.agent = AgentWorkflow.from_tools_or_functions(
            [
                Toolbox.encryption.base64_encode,
                Toolbox.encryption.base64_decode,
                Toolbox.encryption.caesar_cipher_encode,
                Toolbox.encryption.caesar_cipher_decode,
                Toolbox.encryption.reverse_string
            ],
            llm=llm
        )
        self.ctx = Context(self.agent)
    
    def get_system_prompt(self):
        return self.system_prompt

    async def query(self, question: str) -> str:
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)
        return response


class ImageHandler:
    pass

class VideoHandler:
    pass

class RecursiveSolverAgent:
    pass


class Solver:

    def __init__(self, temperature, max_tokens):
        print("Agent initialized.")
        system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "01_assistant.txt")
        self.system_prompt = ""
        with open(system_prompt_path, "r") as file:
            self.system_prompt = file.read().strip()
        llm = LLMFactory.create(self.system_prompt, temperature, max_tokens)
        self.agent = AgentWorkflow.from_tools_or_functions(
            [
            FunctionTool.from_defaults(self.delegate_to_math_expert),
            FunctionTool.from_defaults(self.set_final_answer)
            ],
            llm=llm
        )
        self.ctx = Context(self.agent)
        self.final_answer = ""

    async def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        self.final_answer = ""
        response = await self.query(question)
        print(f"Agent processed the response: {response}")
        if self.final_answer == "":
            response = await self.query("I noticed the final_answer is an empty string. Have you forgot to set the final_answer ?")
        return self.final_answer

    def get_system_prompt(self):
        return self.system_prompt
    
    async def query(self, question: str) -> str:
        response = await self.agent.run(question, ctx=self.ctx)
        response = str(response)

        final_answer = response

        self.set_final_answer(final_answer)
        return response
    
    def set_final_answer(self, final_answer: str) -> str:
        """
        Sets the final answer for the current querry.

        Args:
            final_answer (str): The final answer to be set for the agent.

        Returns:
            str: The final answer that was set.
        """
        print("-> set_final_answer !")
        self.final_answer = final_answer
    
    def delegate_to_math_expert(self, question: str) -> str:
        print("-> delegated to math agent !")
        math_agent = MathExpert(temperature=0.7, max_tokens=100)
        return math_agent.query(question)


if __name__ == "__main__":
    encryption_agent = EncryptionExpert(temperature=0.7, max_tokens=2000)
    # encryption_query = "Descifer this: 'Bmfy bfx ymj wjxzqy gjybjjs z-hqzo fsi zsnajwxnyfyjf-hwfntaf ns fuwnq 2025 ?'"
    encryption_query = ".rewsna eht sa ""tfel"" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI"
    # print(encryption_agent.get_system_prompt())
    # encoding = encryption_agent.caesar_cipher_encode(encryption_query, 5)
    # print(encoding)
    # print(encryption_agent.caesar_cipher_decode(encoding, 5))
    print(asyncio.run(encryption_agent.query(encryption_query)))