Spaces:
Sleeping
Sleeping
minor refactoring
Browse files- agents.py +8 -17
- alfred.py +14 -19
- app.py +19 -16
- args.py +86 -1
- itf_agent.py +2 -2
- llm_factory.py +1 -68
agents.py
CHANGED
@@ -1,23 +1,14 @@
|
|
1 |
from args import Args
|
2 |
from itf_agent import IAgent
|
3 |
-
from llm_factory import AgentPreset
|
4 |
from toolbox import Toolbox
|
5 |
|
6 |
|
7 |
-
PRIMARY_AGENT_PRESET = AgentPreset(Args.primary_llm_interface, Args.primary_model,
|
8 |
-
temperature = None, max_tokens = 2048, repeat_penalty = None)
|
9 |
-
SECONDARY_AGENT_PRESET = AgentPreset(Args.primary_llm_interface, Args.secondary_model,
|
10 |
-
temperature = None, max_tokens = 2048, repeat_penalty = None)
|
11 |
-
VISION_AGENT_PRESET = AgentPreset(Args.vlm_interface, Args.vision_model,
|
12 |
-
temperature = None, max_tokens = 2048, repeat_penalty = None)
|
13 |
-
|
14 |
-
|
15 |
class Manager(IAgent):
|
16 |
"""
|
17 |
Orchestrates the workflow by delegating tasks to specialized nodes and integrating their outputs
|
18 |
"""
|
19 |
def __init__(self):
|
20 |
-
super().__init__("01_manager.txt", PRIMARY_AGENT_PRESET)
|
21 |
|
22 |
|
23 |
class Auditor(IAgent):
|
@@ -25,7 +16,7 @@ class Auditor(IAgent):
|
|
25 |
Reviews manager's outputs for accuracy, safety, and quality
|
26 |
"""
|
27 |
def __init__(self):
|
28 |
-
super().__init__("02_auditor.txt", PRIMARY_AGENT_PRESET)
|
29 |
|
30 |
|
31 |
class Summarizer(IAgent):
|
@@ -33,7 +24,7 @@ class Summarizer(IAgent):
|
|
33 |
Generates concise summaries of conversations or passages.
|
34 |
"""
|
35 |
def __init__(self):
|
36 |
-
super().__init__("03_summarizer.txt", PRIMARY_AGENT_PRESET)
|
37 |
|
38 |
|
39 |
class Solver(IAgent):
|
@@ -41,7 +32,7 @@ class Solver(IAgent):
|
|
41 |
Central problem-solving node that coordinates with specialized experts based on task requirements
|
42 |
"""
|
43 |
def __init__(self):
|
44 |
-
super().__init__("04_solver.txt", PRIMARY_AGENT_PRESET)
|
45 |
|
46 |
|
47 |
class Researcher(IAgent):
|
@@ -55,7 +46,7 @@ class Researcher(IAgent):
|
|
55 |
toolbox.duckduckgo_images_search,
|
56 |
toolbox.duckduckgo_videos_search
|
57 |
]
|
58 |
-
super().__init__("05_researcher.txt", PRIMARY_AGENT_PRESET, tools)
|
59 |
|
60 |
|
61 |
class Reasoner(IAgent):
|
@@ -77,7 +68,7 @@ class Reasoner(IAgent):
|
|
77 |
encryption_toolbox.caesar_cipher_brute_force,
|
78 |
encryption_toolbox.reverse_string
|
79 |
]
|
80 |
-
super().__init__("06_reasoner.txt", PRIMARY_AGENT_PRESET, tools)
|
81 |
|
82 |
|
83 |
class Viewer(IAgent):
|
@@ -85,7 +76,7 @@ class Viewer(IAgent):
|
|
85 |
Processes, analyzes, and generates information related to images
|
86 |
"""
|
87 |
def __init__(self):
|
88 |
-
super().__init__("07_viewer.txt", VISION_AGENT_PRESET)
|
89 |
|
90 |
|
91 |
class OutputGuard(IAgent):
|
@@ -93,4 +84,4 @@ class OutputGuard(IAgent):
|
|
93 |
Performs logical reasoning, inference, and step-by-step problem-solving
|
94 |
"""
|
95 |
def __init__(self):
|
96 |
-
super().__init__("08_output_guard.txt", SECONDARY_AGENT_PRESET)
|
|
|
1 |
from args import Args
|
2 |
from itf_agent import IAgent
|
|
|
3 |
from toolbox import Toolbox
|
4 |
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
class Manager(IAgent):
|
7 |
"""
|
8 |
Orchestrates the workflow by delegating tasks to specialized nodes and integrating their outputs
|
9 |
"""
|
10 |
def __init__(self):
|
11 |
+
super().__init__("01_manager.txt", Args.PRIMARY_AGENT_PRESET)
|
12 |
|
13 |
|
14 |
class Auditor(IAgent):
|
|
|
16 |
Reviews manager's outputs for accuracy, safety, and quality
|
17 |
"""
|
18 |
def __init__(self):
|
19 |
+
super().__init__("02_auditor.txt", Args.PRIMARY_AGENT_PRESET)
|
20 |
|
21 |
|
22 |
class Summarizer(IAgent):
|
|
|
24 |
Generates concise summaries of conversations or passages.
|
25 |
"""
|
26 |
def __init__(self):
|
27 |
+
super().__init__("03_summarizer.txt", Args.PRIMARY_AGENT_PRESET)
|
28 |
|
29 |
|
30 |
class Solver(IAgent):
|
|
|
32 |
Central problem-solving node that coordinates with specialized experts based on task requirements
|
33 |
"""
|
34 |
def __init__(self):
|
35 |
+
super().__init__("04_solver.txt", Args.PRIMARY_AGENT_PRESET)
|
36 |
|
37 |
|
38 |
class Researcher(IAgent):
|
|
|
46 |
toolbox.duckduckgo_images_search,
|
47 |
toolbox.duckduckgo_videos_search
|
48 |
]
|
49 |
+
super().__init__("05_researcher.txt", Args.PRIMARY_AGENT_PRESET, tools)
|
50 |
|
51 |
|
52 |
class Reasoner(IAgent):
|
|
|
68 |
encryption_toolbox.caesar_cipher_brute_force,
|
69 |
encryption_toolbox.reverse_string
|
70 |
]
|
71 |
+
super().__init__("06_reasoner.txt", Args.PRIMARY_AGENT_PRESET, tools)
|
72 |
|
73 |
|
74 |
class Viewer(IAgent):
|
|
|
76 |
Processes, analyzes, and generates information related to images
|
77 |
"""
|
78 |
def __init__(self):
|
79 |
+
super().__init__("07_viewer.txt", Args.VISION_AGENT_PRESET)
|
80 |
|
81 |
|
82 |
class OutputGuard(IAgent):
|
|
|
84 |
Performs logical reasoning, inference, and step-by-step problem-solving
|
85 |
"""
|
86 |
def __init__(self):
|
87 |
+
super().__init__("08_output_guard.txt", Args.SECONDARY_AGENT_PRESET)
|
alfred.py
CHANGED
@@ -1,22 +1,12 @@
|
|
1 |
-
from
|
|
|
|
|
2 |
|
3 |
from args import Args
|
4 |
from graph import State
|
5 |
from graph_builder import GraphBuilder
|
6 |
|
7 |
|
8 |
-
# Maximum number of interactions between Assistant and Manager
|
9 |
-
MAX_INTERACTIONS = 6
|
10 |
-
# Verification happening every few messages to check whether the manager agent
|
11 |
-
# is making progress or it got stuck (in a repetitive loop or similar pitfalls)
|
12 |
-
AUDIT_INTERVAL = 3
|
13 |
-
# Maximum depth of recursion for Manager
|
14 |
-
MAX_DEPTH = 2
|
15 |
-
# For both Assistant and Manager:
|
16 |
-
TEMPERATURE = 0.7
|
17 |
-
MAX_TOKENS = 2000
|
18 |
-
|
19 |
-
|
20 |
class Alfred:
|
21 |
|
22 |
def __init__(self):
|
@@ -25,15 +15,15 @@ class Alfred:
|
|
25 |
self.graph_builder = GraphBuilder()
|
26 |
self.agent_graph = self.graph_builder.build_agent_graph()
|
27 |
|
28 |
-
|
29 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
30 |
-
result =
|
31 |
response = result["final_response"]
|
32 |
print(f"Agent processed the response: {response}")
|
33 |
|
34 |
return response
|
35 |
|
36 |
-
|
37 |
"""
|
38 |
Process a query through the agent graph.
|
39 |
|
@@ -45,10 +35,15 @@ class Alfred:
|
|
45 |
"""
|
46 |
initial_state: State = {
|
47 |
"initial_query": query,
|
48 |
-
"messages": [],
|
49 |
-
"
|
|
|
|
|
|
|
|
|
|
|
50 |
"final_response": None
|
51 |
}
|
52 |
|
53 |
-
result =
|
54 |
return result
|
|
|
1 |
+
from langchain_core.messages import BaseMessage
|
2 |
+
|
3 |
+
from typing import Any, Dict
|
4 |
|
5 |
from args import Args
|
6 |
from graph import State
|
7 |
from graph_builder import GraphBuilder
|
8 |
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
class Alfred:
|
11 |
|
12 |
def __init__(self):
|
|
|
15 |
self.graph_builder = GraphBuilder()
|
16 |
self.agent_graph = self.graph_builder.build_agent_graph()
|
17 |
|
18 |
+
def __call__(self, question: str) -> str:
|
19 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
20 |
+
result = self.process_query(question)
|
21 |
response = result["final_response"]
|
22 |
print(f"Agent processed the response: {response}")
|
23 |
|
24 |
return response
|
25 |
|
26 |
+
def process_query(self, query: str) -> Dict[str, Any]:
|
27 |
"""
|
28 |
Process a query through the agent graph.
|
29 |
|
|
|
35 |
"""
|
36 |
initial_state: State = {
|
37 |
"initial_query": query,
|
38 |
+
"messages": [BaseMessage(query)], # Manager's context
|
39 |
+
"task_progress": [], # Solver's context
|
40 |
+
"audit_interval": Args.AlfredParams.AUDIT_INTERVAL,
|
41 |
+
"manager_queries": 0,
|
42 |
+
"solver_queries": 0,
|
43 |
+
"max_interactions": Args.AlfredParams.MAX_INTERACTIONS,
|
44 |
+
"max_solving_effort": Args.AlfredParams.MAX_SOLVING_EFFORT,
|
45 |
"final_response": None
|
46 |
}
|
47 |
|
48 |
+
result = self.agent_graph.invoke(initial_state)
|
49 |
return result
|
app.py
CHANGED
@@ -52,6 +52,7 @@ class Application:
|
|
52 |
"""
|
53 |
|
54 |
print(f"Fetching questions from: {self.questions_url}")
|
|
|
55 |
try:
|
56 |
response = requests.get(self.questions_url, timeout=15)
|
57 |
response.raise_for_status()
|
@@ -62,7 +63,8 @@ class Application:
|
|
62 |
print(f"Fetched {len(questions_data)} questions.")
|
63 |
except requests.exceptions.JSONDecodeError as e:
|
64 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
65 |
-
|
|
|
66 |
return f"Error decoding server response for questions: {e}", None
|
67 |
except requests.exceptions.RequestException as e:
|
68 |
print(f"Error fetching questions: {e}")
|
@@ -73,7 +75,7 @@ class Application:
|
|
73 |
return questions_data
|
74 |
|
75 |
@staticmethod
|
76 |
-
|
77 |
"""
|
78 |
Runs the agent on a list of questions and collects results.
|
79 |
|
@@ -99,7 +101,7 @@ class Application:
|
|
99 |
print(f"Skipping item with missing task_id or question: {item}")
|
100 |
continue
|
101 |
try:
|
102 |
-
submitted_answer =
|
103 |
print(f"SUBMITED_ANSWER: {submitted_answer}")
|
104 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
105 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
@@ -127,17 +129,18 @@ class Application:
|
|
127 |
print(f"Submitting {len(answers_payload)} answers to: {self.submit_url}")
|
128 |
try:
|
129 |
if MOCK_SUBMISSION:
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
141 |
else:
|
142 |
response = requests.post(self.submit_url, json=submission_data, timeout=60)
|
143 |
response.raise_for_status()
|
@@ -179,7 +182,7 @@ class Application:
|
|
179 |
results_df = pd.DataFrame(results_log)
|
180 |
return status_message, results_df
|
181 |
|
182 |
-
|
183 |
"""
|
184 |
Fetches all questions, runs the agent on them, submits all answers,
|
185 |
and displays the results.
|
@@ -202,7 +205,7 @@ class Application:
|
|
202 |
questions_data = self._fetch_questions()
|
203 |
|
204 |
# 3. Run your Agent
|
205 |
-
results_log, answers_payload =
|
206 |
|
207 |
if not answers_payload:
|
208 |
print("Agent did not produce any answers to submit.")
|
|
|
52 |
"""
|
53 |
|
54 |
print(f"Fetching questions from: {self.questions_url}")
|
55 |
+
response = None
|
56 |
try:
|
57 |
response = requests.get(self.questions_url, timeout=15)
|
58 |
response.raise_for_status()
|
|
|
63 |
print(f"Fetched {len(questions_data)} questions.")
|
64 |
except requests.exceptions.JSONDecodeError as e:
|
65 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
+
if response:
|
67 |
+
print(f"Response text: {response.text[:500]}")
|
68 |
return f"Error decoding server response for questions: {e}", None
|
69 |
except requests.exceptions.RequestException as e:
|
70 |
print(f"Error fetching questions: {e}")
|
|
|
75 |
return questions_data
|
76 |
|
77 |
@staticmethod
|
78 |
+
def _run_agent(questions_data, agent):
|
79 |
"""
|
80 |
Runs the agent on a list of questions and collects results.
|
81 |
|
|
|
101 |
print(f"Skipping item with missing task_id or question: {item}")
|
102 |
continue
|
103 |
try:
|
104 |
+
submitted_answer = agent(question_text)
|
105 |
print(f"SUBMITED_ANSWER: {submitted_answer}")
|
106 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
107 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
129 |
print(f"Submitting {len(answers_payload)} answers to: {self.submit_url}")
|
130 |
try:
|
131 |
if MOCK_SUBMISSION:
|
132 |
+
app_username = self.username
|
133 |
+
class MockResponse:
|
134 |
+
status_code = 200
|
135 |
+
def json(self):
|
136 |
+
return {
|
137 |
+
"username": app_username,
|
138 |
+
"score": 100,
|
139 |
+
"correct_count": len(answers_payload),
|
140 |
+
"total_attempted": len(answers_payload),
|
141 |
+
"message": "Mock submission successful."
|
142 |
+
}
|
143 |
+
response = MockResponse()
|
144 |
else:
|
145 |
response = requests.post(self.submit_url, json=submission_data, timeout=60)
|
146 |
response.raise_for_status()
|
|
|
182 |
results_df = pd.DataFrame(results_log)
|
183 |
return status_message, results_df
|
184 |
|
185 |
+
def eval_and_submit_all(self, profile: gr.OAuthProfile | None):
|
186 |
"""
|
187 |
Fetches all questions, runs the agent on them, submits all answers,
|
188 |
and displays the results.
|
|
|
205 |
questions_data = self._fetch_questions()
|
206 |
|
207 |
# 3. Run your Agent
|
208 |
+
results_log, answers_payload = self._run_agent(questions_data, agent)
|
209 |
|
210 |
if not answers_payload:
|
211 |
print("Agent did not produce any answers to submit.")
|
args.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
|
2 |
from enum import Enum
|
|
|
3 |
|
4 |
from logger import Logger
|
5 |
|
@@ -10,6 +10,71 @@ class LLMInterface(Enum):
|
|
10 |
# Add your own if you like (then adjust the LLMFactory)
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
class Args:
|
14 |
LOGGER = Logger.set_logger()
|
15 |
primary_llm_interface=LLMInterface.OPENAI
|
@@ -21,3 +86,23 @@ class Args:
|
|
21 |
api_base="http://127.0.0.1:1234/v1" # LM Studio local endpoint
|
22 |
api_key=None
|
23 |
token = "" # Not needed when using OpenAILike API
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from enum import Enum
|
2 |
+
from typing import Optional
|
3 |
|
4 |
from logger import Logger
|
5 |
|
|
|
10 |
# Add your own if you like (then adjust the LLMFactory)
|
11 |
|
12 |
|
13 |
+
class AgentPreset:
|
14 |
+
def __init__(self, interface: LLMInterface, model_name: str, temperature: Optional[float] = None,
|
15 |
+
max_tokens: Optional[int] = None, repeat_penalty: Optional[float] = None):
|
16 |
+
"""
|
17 |
+
Initialize an AgentPreset with LLM configuration parameters.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
interface: The model interface to use (e.g., OPENAI, HUGGINGFACE)
|
21 |
+
model_name: Name of the model to use
|
22 |
+
temperature: Controls randomness in responses (0.0-1.0)
|
23 |
+
max_tokens: Maximum number of tokens to generate in response
|
24 |
+
repeat_penalty: Penalty for token repetition
|
25 |
+
"""
|
26 |
+
self.interface = interface
|
27 |
+
self.model_name = model_name
|
28 |
+
self.temperature = temperature
|
29 |
+
self.max_tokens = max_tokens
|
30 |
+
self.repeat_penalty = repeat_penalty
|
31 |
+
|
32 |
+
def get_interface(self) -> LLMInterface:
|
33 |
+
"""
|
34 |
+
Get the model interface.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
LLMInterface: The interface used for this agent.
|
38 |
+
"""
|
39 |
+
return self.interface
|
40 |
+
|
41 |
+
def get_model_name(self) -> str:
|
42 |
+
"""
|
43 |
+
Get the model name.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
str: The name of the model.
|
47 |
+
"""
|
48 |
+
return self.model_name
|
49 |
+
|
50 |
+
def get_temperature(self) -> float | None:
|
51 |
+
"""
|
52 |
+
Get the temperature setting.
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
float: The temperature value controlling randomness.
|
56 |
+
"""
|
57 |
+
return self.temperature
|
58 |
+
|
59 |
+
def get_max_tokens(self) -> int | None:
|
60 |
+
"""
|
61 |
+
Get the maximum tokens setting.
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
int: The maximum number of tokens for generation.
|
65 |
+
"""
|
66 |
+
return self.max_tokens
|
67 |
+
|
68 |
+
def get_repeat_penalty(self) -> float | None:
|
69 |
+
"""
|
70 |
+
Get the repeat penalty setting.
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
float: The penalty value for token repetition.
|
74 |
+
"""
|
75 |
+
return self.repeat_penalty
|
76 |
+
|
77 |
+
|
78 |
class Args:
|
79 |
LOGGER = Logger.set_logger()
|
80 |
primary_llm_interface=LLMInterface.OPENAI
|
|
|
86 |
api_base="http://127.0.0.1:1234/v1" # LM Studio local endpoint
|
87 |
api_key=None
|
88 |
token = "" # Not needed when using OpenAILike API
|
89 |
+
# Agent presets
|
90 |
+
PRIMARY_AGENT_PRESET = AgentPreset(
|
91 |
+
primary_llm_interface, primary_model,
|
92 |
+
temperature = None, max_tokens = 2048, repeat_penalty = None
|
93 |
+
)
|
94 |
+
SECONDARY_AGENT_PRESET = AgentPreset(
|
95 |
+
primary_llm_interface, secondary_model,
|
96 |
+
temperature = None, max_tokens = 2048, repeat_penalty = None
|
97 |
+
)
|
98 |
+
VISION_AGENT_PRESET = AgentPreset(
|
99 |
+
vlm_interface, vision_model,
|
100 |
+
temperature = None, max_tokens = 2048, repeat_penalty = None
|
101 |
+
)
|
102 |
+
class AlfredParams:
|
103 |
+
# Maximum number of interactions between Manager and Solver
|
104 |
+
MAX_INTERACTIONS = 6
|
105 |
+
# Maximum number of interactions between Solver and it's assistants
|
106 |
+
MAX_SOLVING_EFFORT = 6
|
107 |
+
# Verification happening every few messages to see whether the manager agent got stuck
|
108 |
+
AUDIT_INTERVAL = 3
|
itf_agent.py
CHANGED
@@ -5,8 +5,8 @@ import os
|
|
5 |
import re
|
6 |
from typing import List
|
7 |
|
8 |
-
from args import Args
|
9 |
-
from llm_factory import LLMFactory
|
10 |
|
11 |
|
12 |
class IAgent():
|
|
|
5 |
import re
|
6 |
from typing import List
|
7 |
|
8 |
+
from args import Args, AgentPreset
|
9 |
+
from llm_factory import LLMFactory
|
10 |
|
11 |
|
12 |
class IAgent():
|
llm_factory.py
CHANGED
@@ -1,74 +1,7 @@
|
|
1 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
2 |
from langchain_openai import ChatOpenAI
|
3 |
|
4 |
-
from
|
5 |
-
|
6 |
-
from args import LLMInterface, Args
|
7 |
-
|
8 |
-
|
9 |
-
class AgentPreset:
|
10 |
-
def __init__(self, interface: LLMInterface, model_name: str, temperature: Optional[float] = None,
|
11 |
-
max_tokens: Optional[int] = None, repeat_penalty: Optional[float] = None):
|
12 |
-
"""
|
13 |
-
Initialize an AgentPreset with LLM configuration parameters.
|
14 |
-
|
15 |
-
Args:
|
16 |
-
interface: The model interface to use (e.g., OPENAI, HUGGINGFACE)
|
17 |
-
model_name: Name of the model to use
|
18 |
-
temperature: Controls randomness in responses (0.0-1.0)
|
19 |
-
max_tokens: Maximum number of tokens to generate in response
|
20 |
-
repeat_penalty: Penalty for token repetition
|
21 |
-
"""
|
22 |
-
self.interface = interface
|
23 |
-
self.model_name = model_name
|
24 |
-
self.temperature = temperature
|
25 |
-
self.max_tokens = max_tokens
|
26 |
-
self.repeat_penalty = repeat_penalty
|
27 |
-
|
28 |
-
def get_interface(self) -> LLMInterface:
|
29 |
-
"""
|
30 |
-
Get the model interface.
|
31 |
-
|
32 |
-
Returns:
|
33 |
-
LLMInterface: The interface used for this agent.
|
34 |
-
"""
|
35 |
-
return self.interface
|
36 |
-
|
37 |
-
def get_model_name(self) -> str:
|
38 |
-
"""
|
39 |
-
Get the model name.
|
40 |
-
|
41 |
-
Returns:
|
42 |
-
str: The name of the model.
|
43 |
-
"""
|
44 |
-
return self.model_name
|
45 |
-
|
46 |
-
def get_temperature(self) -> float:
|
47 |
-
"""
|
48 |
-
Get the temperature setting.
|
49 |
-
|
50 |
-
Returns:
|
51 |
-
float: The temperature value controlling randomness.
|
52 |
-
"""
|
53 |
-
return self.temperature
|
54 |
-
|
55 |
-
def get_max_tokens(self) -> int:
|
56 |
-
"""
|
57 |
-
Get the maximum tokens setting.
|
58 |
-
|
59 |
-
Returns:
|
60 |
-
int: The maximum number of tokens for generation.
|
61 |
-
"""
|
62 |
-
return self.max_tokens
|
63 |
-
|
64 |
-
def get_repeat_penalty(self) -> float:
|
65 |
-
"""
|
66 |
-
Get the repeat penalty setting.
|
67 |
-
|
68 |
-
Returns:
|
69 |
-
float: The penalty value for token repetition.
|
70 |
-
"""
|
71 |
-
return self.repeat_penalty
|
72 |
|
73 |
|
74 |
class LLMFactory():
|
|
|
1 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
2 |
from langchain_openai import ChatOpenAI
|
3 |
|
4 |
+
from args import LLMInterface, Args, AgentPreset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
class LLMFactory():
|