File size: 10,084 Bytes
625a47c ff88345 625a47c 0724936 625a47c 0724936 625a47c ff88345 0724936 625a47c 0724936 625a47c ff88345 0724936 625a47c 0724936 625a47c ff88345 625a47c 0724936 625a47c 44c460e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import os
import io
import requests
import gradio as gr
from groq import Groq
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
from deep_translator import GoogleTranslator
from PIL import Image, ImageDraw
import joblib
import time
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import openai
import torch
import warnings
from huggingface_hub import InferenceApi
# Detect if GPU is available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Set up Groq API key
api_key = os.getenv("GROQ_API_KEY")
client = Groq(api_key=api_key)
# Set your Hugging Face API key
os.environ['HF_API_KEY']
api_key = os.getenv('HF_API_KEY')
if api_key is None:
raise ValueError("Hugging Face API key is not set. Please set it in your environment.")
# Set OpenAI API key for text generation
openai.api_key = os.getenv('OPENAI_API_KEY')
headers = {"Authorization": f"Bearer {api_key}"}
# Load GPT-Neo for creative text generation
text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
text_generation_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name).to(device)
text_generation_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
# Add padding token to GPT-Neo tokenizer if not present
if text_generation_tokenizer.pad_token is None:
text_generation_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# Define the API URL for image generation
API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4"
# Load the trained sentiment analysis model and preprocessing steps
with warnings.catch_warnings():
warnings.simplefilter("ignore")
model = joblib.load('model.pkl')
# Function to query Hugging Face API
def query(payload, max_retries=5):
for attempt in range(max_retries):
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 503:
print(f"Model is still loading, retrying... Attempt {attempt + 1}/{max_retries}")
estimated_time = min(response.json().get("estimated_time", 60), 60)
time.sleep(estimated_time)
continue
if response.status_code != 200:
print(f"Error: Received status code {response.status_code}")
print(f"Response: {response.text}")
return None
return response.content
print(f"Failed to generate image after {max_retries} attempts.")
return None
# Function to generate image
def generate_image(prompt):
image_bytes = query({"inputs": prompt})
if image_bytes is None:
error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
d = ImageDraw.Draw(error_img)
d.text((10, 150), "Image Generation Failed", fill=(255, 255, 255))
return error_img
try:
image = Image.open(io.BytesIO(image_bytes))
return image
except Exception as e:
print(f"Error: {e}")
error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
d = ImageDraw.Draw(error_img)
d.text((10, 150), "Invalid Image Data", fill=(255, 255, 255))
return error_img
# Tamil Audio to Tamil text
def transcribe_audio(audio_path):
if audio_path is None:
return "Please upload an audio file."
try:
with open(audio_path, "rb") as file:
transcription = client.audio.transcriptions.create(
file=(os.path.basename(audio_path), file.read()),
model="whisper-large-v3",
response_format="verbose_json",
)
return transcription.text
except Exception as e:
return f"An error occurred: {str(e)}"
# Transliterate Romanized Tamil (in English letters) to Tamil script
def transliterate_to_tamil(romanized_text):
try:
# Step 1: Normalize the input for better transliteration results
romanized_text = romanized_text.strip().lower() # Remove extra spaces and convert to lowercase
# Step 2: Handle common punctuation that might interrupt transliteration
romanized_text = romanized_text.replace(".", " ").replace(",", " ").replace("?", " ").replace("!", " ")
# Step 3: Apply ITRANS transliteration
tamil_text = transliterate(romanized_text, sanscript.ITRANS, sanscript.TAMIL)
return tamil_text
except Exception as e:
return f"An error occurred during transliteration: {str(e)}"
# Function to translate Tamil text to English using deep-translator
def translate_tamil_to_english(tamil_text):
if not tamil_text:
return "Please provide text to translate."
try:
translator = GoogleTranslator(source='ta', target='en')
translated_text = translator.translate(tamil_text)
# Predict sentiment from translated text
sentiment_result = predict_sentiment(translated_text)
return translated_text, sentiment_result, translated_text
except Exception as e:
return f"An error occurred during translation: {str(e)}", None, None
# Function to predict sentiment from English text
def predict_sentiment(english_text):
if not english_text:
return "No text provided for sentiment analysis."
try:
sentiment = model.predict([english_text])[0]
return f"Sentiment: {sentiment}"
except Exception as e:
return f"An error occurred during sentiment prediction: {str(e)}"
# Generate creative text based on the translated English text
def generate_creative_text(english_text):
if not english_text:
return "Please provide text to generate creative content."
try:
inputs = text_generation_tokenizer(english_text, return_tensors="pt", padding=True, truncation=True).to(device)
# Set parameters to control the output and avoid repetition
generated_tokens = text_generation_model.generate(
**inputs,
max_length=60,
num_return_sequences=1,
no_repeat_ngram_size=3,
temperature=0.7,
top_p=0.9,
do_sample=True,
early_stopping=True
)
creative_text = text_generation_tokenizer.decode(generated_tokens[0], skip_special_tokens=True).strip()
return creative_text
except Exception as e:
return f"An error occurred during text generation: {str(e)}"
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
<h1 style='color: #4CAF50;'>🎙️ Tamil Audio Transcription, Translation, Sentiment Prediction, Creative Text Generation, and Image Generation</h1>
<p style='color: #000080;'>Upload an audio file to get the Tamil transcription, edit the transcription or type Romanized Tamil to convert it to Tamil script, translate it to English, predict the sentiment of the translated text, generate creative English text, and generate an image.</p>
"""
)
# Input for audio file
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
transcribe_button = gr.Button("Transcribe Audio", elem_id="transcribe_btn")
# Output field for Tamil transcription with ability to edit or type Romanized Tamil
transcription_output = gr.Textbox(label="Transcription (Tamil or Romanized Tamil)", interactive=True ,elem_id="transcription_output")
# Button for transliterating Romanized Tamil to Tamil script
transliterate_button = gr.Button("Convert to Tamil Script", elem_id="transliterate_btn")
# Input field for Tamil text and translate button
with gr.Row():
translate_button = gr.Button("Translate to English", elem_id="translate_btn")
# Output field for English translation
translation_output = gr.Textbox(label="Translation (English)", elem_id="translation_output")
# Output field for sentiment prediction
sentiment_output = gr.Textbox(label="Sentiment", elem_id="sentiment_output")
# Button to generate creative text
creative_text_button = gr.Button("Generate Creative Text", elem_id="creative_btn")
# Output field for creative text
creative_text_output = gr.Textbox(label="Creative Text", elem_id="creative_output")
# Button to generate image
generate_button = gr.Button("Generate Image", elem_id="generate_btn")
# Output field for image file
image_output = gr.Image(label="Generated Image")
# Define variable to hold the translated English text
translated_text_var = gr.State()
# Define button click actions
transcribe_button.click(
fn=transcribe_audio,
inputs=audio_input,
outputs=transcription_output,
)
transliterate_button.click(
fn=transliterate_to_tamil,
inputs=transcription_output,
outputs=transcription_output,
)
translate_button.click(
fn=translate_tamil_to_english,
inputs=transcription_output,
outputs=[translation_output, sentiment_output, translated_text_var],
)
creative_text_button.click(
fn=generate_creative_text,
inputs=translated_text_var,
outputs=creative_text_output,
)
generate_button.click(
fn=generate_image,
inputs=translated_text_var,
outputs=image_output,
)
# Apply custom CSS
demo.css = """
#transcribe_btn, #transliterate_btn, #translate_btn, #creative_btn, #generate_btn {
background-color: #05907B; /* Change button color */
color: white; /* Change text color */
}
#translation_output,#transcription_output, #sentiment_output, #creative_output {
background-color: #f0f8ff; /* Change background color of text areas */
}
h1 {
color: #4CAF50; /* Main heading color */
}
p {
color: #000080; /* Plain text color */
}
/* Add thick border to entire app */
.gradio-container {
border: 5px solid #05907B; /* Thick border color */
padding: 10px; /* Padding inside the border */
border-radius: 10px; /* Optional: add rounded corners */
}
"""
# Launch the interface and ensure code stops afterward
demo.launch(share=True)
|