File size: 4,714 Bytes
cbc840b
b88f708
cbc840b
 
b88f708
cbc840b
b88f708
 
cbc840b
b88f708
 
cbc840b
b88f708
 
cbc840b
b88f708
cbc840b
b88f708
 
cbc840b
b88f708
cbc840b
b88f708
cbc840b
b88f708
cbc840b
b88f708
cbc840b
b88f708
cbc840b
b88f708
cbc840b
 
 
b88f708
cbc840b
b88f708
 
 
cbc840b
 
 
 
 
 
 
 
b88f708
cbc840b
 
 
b88f708
cbc840b
b88f708
cbc840b
 
 
 
 
 
 
 
b88f708
cbc840b
b88f708
cbc840b
 
 
 
 
 
 
 
 
b88f708
 
cbc840b
 
b88f708
cbc840b
 
b88f708
cbc840b
b88f708
 
 
cbc840b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b88f708
cbc840b
 
b88f708
cbc840b
 
 
b88f708
 
cbc840b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import streamlit as st
import torch
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM
from diffusers import StableDiffusionPipeline
from rouge_score import rouge_scorer
from PIL import Image
import tempfile
import os
import time

# Use CUDA if available
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load translation model (Tamil to English)
translator_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt").to(device)
translator_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator_tokenizer.src_lang = "ta_IN"

# Load GPT-2 for creative text generation
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")

# Load a lightweight image generation model (for CPU)
pipe = StableDiffusionPipeline.from_pretrained(
    "OFA-Sys/small-stable-diffusion-v0",
    torch_dtype=torch.float32,
    use_auth_token=os.getenv("HF_TOKEN")  # Set this in Hugging Face Space secrets
).to(device)
pipe.safety_checker = None  # Optional: disable safety checker for speed

# Translation Function
def translate_tamil_to_english(text, reference=None):
    start = time.time()
    inputs = translator_tokenizer(text, return_tensors="pt").to(device)
    outputs = translator_model.generate(
        **inputs,
        forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
    )
    translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    duration = round(time.time() - start, 2)

    rouge_l = None
    if reference:
        scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
        score = scorer.score(reference.lower(), translated.lower())
        rouge_l = round(score["rougeL"].fmeasure, 4)

    return translated, duration, rouge_l

# Creative Text Generator
def generate_creative_text(prompt, max_length=100):
    start = time.time()
    input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
    output = gen_model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50, temperature=0.9)
    text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
    duration = round(time.time() - start, 2)

    tokens = text.split()
    repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)

    return text, duration, len(tokens), round(repetition_rate, 4)

# AI Image Generator
def generate_image(prompt):
    try:
        start = time.time()
        result = pipe(prompt)
        image = result.images[0].resize((256, 256))
        tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
        image.save(tmp_file.name)
        return tmp_file.name, round(time.time() - start, 2)
    except Exception as e:
        return None, f"Image generation failed: {str(e)}"

# Streamlit UI
st.set_page_config(page_title="Tamil β†’ English + AI Art", layout="centered")
st.title("🧠 Tamil β†’ English + 🎨 Creative Text + AI Image")

tamil_input = st.text_area("✍️ Enter Tamil text here", height=150)
reference_input = st.text_input("πŸ“˜ Optional: Reference English translation for ROUGE")

if st.button("πŸš€ Generate Output"):
    if not tamil_input.strip():
        st.warning("Please enter Tamil text.")
    else:
        with st.spinner("πŸ”„ Translating Tamil to English..."):
            english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)

        st.success(f"βœ… Translated in {t_time} seconds")
        st.markdown(f"**πŸ“ English Translation:** `{english_text}`")
        if rouge_l is not None:
            st.markdown(f"πŸ“Š **ROUGE-L Score:** `{rouge_l}`")
        else:
            st.info("ℹ️ ROUGE-L not calculated. Reference not provided.")

        with st.spinner("🎨 Generating image..."):
            image_path, img_time = generate_image(english_text)

        if image_path:
            st.success(f"πŸ–ΌοΈ Image generated in {img_time} seconds")
            st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
        else:
            st.error(image_path)

        with st.spinner("πŸ’‘ Generating creative text..."):
            creative, c_time, tokens, rep_rate = generate_creative_text(english_text)

        st.success(f"✨ Creative text generated in {c_time} seconds")
        st.markdown(f"**🧠 Creative Output:** `{creative}`")
        st.markdown(f"πŸ“Œ Tokens: `{tokens}`, Repetition Rate: `{rep_rate}`")

st.markdown("---")
st.caption("Built by Sureshkumar R using MBart, GPT-2 & Stable Diffusion on Hugging Face")