File size: 1,663 Bytes
e97aebb
 
803ddb4
 
e5964e8
e97aebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from diffusers import StableDiffusionPipeline
import torch

# 1. Tamil to English Translator
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ta-en")

# 2. English Text Generator (you can use GPT2 or any causal model)
generator = pipeline("text-generation", model="gpt2")

# 3. Image Generator using Stable Diffusion
device = "cuda" if torch.cuda.is_available() else "cpu"
image_pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    torch_dtype=torch.float16 if device == "cuda" else torch.float32
)
image_pipe = image_pipe.to(device)

# πŸ‘‡ Combined function
def generate_image_from_tamil(tamil_input):
    # Step 1: Translate Tamil β†’ English
    translated = translator(tamil_input, max_length=100)[0]['translation_text']

    # Step 2: Generate English sentence based on translated input
    generated = generator(translated, max_length=50, num_return_sequences=1)[0]['generated_text']

    # Step 3: Generate Image based on English text
    image = image_pipe(generated).images[0]

    return translated, generated, image

# 🎨 Gradio UI
iface = gr.Interface(
    fn=generate_image_from_tamil,
    inputs=gr.Textbox(lines=2, label="Enter Tamil Text"),
    outputs=[
        gr.Textbox(label="Translated English Text"),
        gr.Textbox(label="Generated English Prompt"),
        gr.Image(label="Generated Image")
    ],
    title="Tamil to Image Generator πŸŒ…",
    description="Translates Tamil β†’ English, generates story β†’ creates image using Stable Diffusion."
)

iface.launch()