Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,45 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
7 |
from PIL import Image
|
8 |
import tempfile
|
9 |
-
import
|
|
|
|
|
10 |
import torch.nn.functional as F
|
11 |
-
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
12 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, GPT2LMHeadModel
|
13 |
-
from rouge_score import rouge_scorer
|
14 |
|
15 |
# Set device
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
|
18 |
-
#
|
19 |
-
openai.api_key = os.getenv("OPENAI_API_KEY")
|
20 |
-
|
21 |
-
# ---- Load MBart (Translation) ----
|
22 |
translator_model = MBartForConditionalGeneration.from_pretrained(
|
23 |
"facebook/mbart-large-50-many-to-many-mmt"
|
24 |
-
)
|
25 |
translator_tokenizer = MBart50TokenizerFast.from_pretrained(
|
26 |
"facebook/mbart-large-50-many-to-many-mmt"
|
27 |
)
|
28 |
-
translator_model.to(device)
|
29 |
translator_tokenizer.src_lang = "ta_IN"
|
30 |
|
31 |
-
#
|
32 |
-
gen_model = GPT2LMHeadModel.from_pretrained("gpt2")
|
33 |
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
34 |
-
gen_model.to(device)
|
35 |
gen_model.eval()
|
36 |
|
37 |
-
#
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
#
|
41 |
def translate_tamil_to_english(text, reference=None):
|
42 |
start = time.time()
|
43 |
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
|
@@ -56,63 +58,52 @@ def translate_tamil_to_english(text, reference=None):
|
|
56 |
|
57 |
return translated, duration, rouge_l
|
58 |
|
59 |
-
#
|
60 |
def generate_creative_text(prompt, max_length=100):
|
61 |
start = time.time()
|
62 |
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
|
63 |
-
output = gen_model.generate(
|
64 |
-
input_ids,
|
65 |
-
max_length=max_length,
|
66 |
-
do_sample=True,
|
67 |
-
top_k=50,
|
68 |
-
temperature=0.9
|
69 |
-
)
|
70 |
text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
|
71 |
duration = round(time.time() - start, 2)
|
72 |
|
73 |
tokens = text.split()
|
74 |
-
|
75 |
|
|
|
76 |
with torch.no_grad():
|
77 |
input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
|
78 |
outputs = gen_model(input_ids, labels=input_ids)
|
79 |
loss = outputs.loss
|
80 |
perplexity = torch.exp(loss).item()
|
81 |
|
82 |
-
return text, duration, len(tokens), round(
|
83 |
|
84 |
-
#
|
85 |
def generate_image(prompt):
|
86 |
try:
|
87 |
start = time.time()
|
88 |
-
|
89 |
-
|
90 |
-
prompt=prompt,
|
91 |
-
size="512x512",
|
92 |
-
quality="standard",
|
93 |
-
n=1
|
94 |
-
)
|
95 |
-
image_url = response.data[0].url
|
96 |
-
image_data = Image.open(requests.get(image_url, stream=True).raw).resize((256, 256))
|
97 |
-
|
98 |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
99 |
-
|
100 |
duration = round(time.time() - start, 2)
|
101 |
-
|
102 |
-
image_input = clip_preprocess(image_data).unsqueeze(0).to(device)
|
103 |
-
text_input = clip.tokenize([prompt]).to(device)
|
104 |
-
with torch.no_grad():
|
105 |
-
image_features = clip_model.encode_image(image_input)
|
106 |
-
text_features = clip_model.encode_text(text_input)
|
107 |
-
similarity = F.cosine_similarity(image_features, text_features).item()
|
108 |
-
|
109 |
-
return tmp_file.name, duration, round(similarity, 4)
|
110 |
except Exception as e:
|
111 |
-
return None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
#
|
114 |
st.set_page_config(page_title="Tamil β English + AI Art", layout="centered")
|
115 |
-
st.title("π§ Tamil β English + π¨ Creative Text +
|
116 |
|
117 |
tamil_input = st.text_area("βοΈ Enter Tamil text", height=150)
|
118 |
reference_input = st.text_input("π Optional: Reference English translation for ROUGE")
|
@@ -129,22 +120,25 @@ if st.button("π Generate Output"):
|
|
129 |
if rouge_l is not None:
|
130 |
st.markdown(f"π ROUGE-L Score: `{rouge_l}`")
|
131 |
|
132 |
-
with st.spinner("
|
133 |
-
image_path, img_time,
|
134 |
|
135 |
-
if
|
136 |
-
st.success(f"πΌοΈ Image generated in {img_time}s
|
137 |
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
|
138 |
-
|
|
|
|
|
|
|
139 |
else:
|
140 |
-
st.error(
|
141 |
|
142 |
with st.spinner("π‘ Generating creative text..."):
|
143 |
creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)
|
144 |
|
145 |
-
st.success(f"β¨ Creative text in {c_time}s")
|
146 |
st.markdown(f"**π§ Creative Output:** `{creative}`")
|
147 |
st.markdown(f"π Tokens: `{tokens}`, π Repetition Rate: `{rep_rate}`, π Perplexity: `{ppl}`")
|
148 |
|
149 |
st.markdown("---")
|
150 |
-
st.caption("Built by Sureshkumar R
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
from rouge_score import rouge_scorer
|
7 |
from PIL import Image
|
8 |
import tempfile
|
9 |
+
import os
|
10 |
+
import time
|
11 |
+
from transformers import CLIPProcessor, CLIPModel
|
12 |
import torch.nn.functional as F
|
|
|
|
|
|
|
13 |
|
14 |
# Set device
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
|
17 |
+
# Load translation model
|
|
|
|
|
|
|
18 |
translator_model = MBartForConditionalGeneration.from_pretrained(
|
19 |
"facebook/mbart-large-50-many-to-many-mmt"
|
20 |
+
).to(device)
|
21 |
translator_tokenizer = MBart50TokenizerFast.from_pretrained(
|
22 |
"facebook/mbart-large-50-many-to-many-mmt"
|
23 |
)
|
|
|
24 |
translator_tokenizer.src_lang = "ta_IN"
|
25 |
|
26 |
+
# Load GPT-2 for creative text
|
|
|
27 |
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
28 |
+
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
|
29 |
gen_model.eval()
|
30 |
|
31 |
+
# Load Stable Diffusion 1.5
|
32 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
33 |
+
"stabilityai/stable-diffusion-1-5",
|
34 |
+
torch_dtype=torch.float32,
|
35 |
+
).to(device)
|
36 |
+
pipe.safety_checker = None # Optional: disable safety filter
|
37 |
+
|
38 |
+
# Load CLIP model
|
39 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
|
40 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
41 |
|
42 |
+
# --- Translation ---
|
43 |
def translate_tamil_to_english(text, reference=None):
|
44 |
start = time.time()
|
45 |
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
|
|
|
58 |
|
59 |
return translated, duration, rouge_l
|
60 |
|
61 |
+
# --- GPT-2 Creative Generation ---
|
62 |
def generate_creative_text(prompt, max_length=100):
|
63 |
start = time.time()
|
64 |
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
|
65 |
+
output = gen_model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50, temperature=0.9)
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
|
67 |
duration = round(time.time() - start, 2)
|
68 |
|
69 |
tokens = text.split()
|
70 |
+
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)
|
71 |
|
72 |
+
# Perplexity
|
73 |
with torch.no_grad():
|
74 |
input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
|
75 |
outputs = gen_model(input_ids, labels=input_ids)
|
76 |
loss = outputs.loss
|
77 |
perplexity = torch.exp(loss).item()
|
78 |
|
79 |
+
return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 4)
|
80 |
|
81 |
+
# --- Stable Diffusion Image Generation ---
|
82 |
def generate_image(prompt):
|
83 |
try:
|
84 |
start = time.time()
|
85 |
+
result = pipe(prompt)
|
86 |
+
image = result.images[0].resize((256, 256))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
88 |
+
image.save(tmp_file.name)
|
89 |
duration = round(time.time() - start, 2)
|
90 |
+
return tmp_file.name, duration, image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
except Exception as e:
|
92 |
+
return None, 0, f"Image generation failed: {str(e)}"
|
93 |
+
|
94 |
+
# --- CLIP Similarity ---
|
95 |
+
def evaluate_clip_similarity(text, image):
|
96 |
+
inputs = clip_processor(text=[text], images=image, return_tensors="pt", padding=True).to(device)
|
97 |
+
with torch.no_grad():
|
98 |
+
outputs = clip_model(**inputs)
|
99 |
+
logits_per_image = outputs.logits_per_image
|
100 |
+
probs = F.softmax(logits_per_image, dim=1)
|
101 |
+
similarity_score = logits_per_image[0][0].item()
|
102 |
+
return round(similarity_score, 4)
|
103 |
|
104 |
+
# --- Streamlit UI ---
|
105 |
st.set_page_config(page_title="Tamil β English + AI Art", layout="centered")
|
106 |
+
st.title("π§ Tamil β English + π¨ Creative Text + AI Image")
|
107 |
|
108 |
tamil_input = st.text_area("βοΈ Enter Tamil text", height=150)
|
109 |
reference_input = st.text_input("π Optional: Reference English translation for ROUGE")
|
|
|
120 |
if rouge_l is not None:
|
121 |
st.markdown(f"π ROUGE-L Score: `{rouge_l}`")
|
122 |
|
123 |
+
with st.spinner("π¨ Generating image..."):
|
124 |
+
image_path, img_time, image_obj = generate_image(english_text)
|
125 |
|
126 |
+
if isinstance(image_obj, Image.Image):
|
127 |
+
st.success(f"πΌοΈ Image generated in {img_time}s")
|
128 |
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
|
129 |
+
|
130 |
+
with st.spinner("π Evaluating CLIP similarity..."):
|
131 |
+
clip_score = evaluate_clip_similarity(english_text, image_obj)
|
132 |
+
st.markdown(f"π CLIP Text-Image Similarity: `{clip_score}`")
|
133 |
else:
|
134 |
+
st.error(image_obj)
|
135 |
|
136 |
with st.spinner("π‘ Generating creative text..."):
|
137 |
creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)
|
138 |
|
139 |
+
st.success(f"β¨ Creative text generated in {c_time}s")
|
140 |
st.markdown(f"**π§ Creative Output:** `{creative}`")
|
141 |
st.markdown(f"π Tokens: `{tokens}`, π Repetition Rate: `{rep_rate}`, π Perplexity: `{ppl}`")
|
142 |
|
143 |
st.markdown("---")
|
144 |
+
st.caption("Built by Sureshkumar R using MBart, GPT-2, Stable Diffusion 1.5, and CLIP (Open Source)")
|