Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ from PIL import Image
|
|
8 |
import tempfile
|
9 |
import os
|
10 |
import time
|
|
|
|
|
11 |
|
12 |
# Use CUDA if available
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -21,13 +23,16 @@ translator_tokenizer.src_lang = "ta_IN"
|
|
21 |
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
|
22 |
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
23 |
|
24 |
-
# Load a lightweight image generation model
|
25 |
pipe = StableDiffusionPipeline.from_pretrained(
|
26 |
"OFA-Sys/small-stable-diffusion-v0",
|
27 |
torch_dtype=torch.float32,
|
28 |
-
use_auth_token=os.getenv("HF_TOKEN") # Set
|
29 |
).to(device)
|
30 |
-
pipe.safety_checker = None # Optional: disable
|
|
|
|
|
|
|
31 |
|
32 |
# Translation Function
|
33 |
def translate_tamil_to_english(text, reference=None):
|
@@ -48,7 +53,7 @@ def translate_tamil_to_english(text, reference=None):
|
|
48 |
|
49 |
return translated, duration, rouge_l
|
50 |
|
51 |
-
# Creative Text Generator
|
52 |
def generate_creative_text(prompt, max_length=100):
|
53 |
start = time.time()
|
54 |
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
|
@@ -59,26 +64,45 @@ def generate_creative_text(prompt, max_length=100):
|
|
59 |
tokens = text.split()
|
60 |
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
# AI Image Generator
|
65 |
def generate_image(prompt):
|
66 |
try:
|
67 |
start = time.time()
|
68 |
result = pipe(prompt)
|
69 |
image = result.images[0].resize((256, 256))
|
|
|
70 |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
71 |
image.save(tmp_file.name)
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
except Exception as e:
|
74 |
-
return None, f"Image generation failed: {str(e)}"
|
75 |
|
76 |
# Streamlit UI
|
77 |
st.set_page_config(page_title="Tamil β English + AI Art", layout="centered")
|
78 |
st.title("π§ Tamil β English + π¨ Creative Text + AI Image")
|
79 |
|
80 |
tamil_input = st.text_area("βοΈ Enter Tamil text here", height=150)
|
81 |
-
reference_input = st.text_input("π Optional: Reference English translation for ROUGE")
|
82 |
|
83 |
if st.button("π Generate Output"):
|
84 |
if not tamil_input.strip():
|
@@ -95,20 +119,24 @@ if st.button("π Generate Output"):
|
|
95 |
st.info("βΉοΈ ROUGE-L not calculated. Reference not provided.")
|
96 |
|
97 |
with st.spinner("π¨ Generating image..."):
|
98 |
-
image_path, img_time = generate_image(english_text)
|
99 |
|
100 |
if image_path:
|
101 |
st.success(f"πΌοΈ Image generated in {img_time} seconds")
|
102 |
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
|
|
|
103 |
else:
|
104 |
st.error(image_path)
|
105 |
|
106 |
with st.spinner("π‘ Generating creative text..."):
|
107 |
-
creative, c_time, tokens, rep_rate = generate_creative_text(english_text)
|
108 |
|
109 |
st.success(f"β¨ Creative text generated in {c_time} seconds")
|
110 |
-
st.markdown(
|
111 |
-
st.
|
|
|
|
|
|
|
112 |
|
113 |
st.markdown("---")
|
114 |
st.caption("Built by Sureshkumar R using MBart, GPT-2 & Stable Diffusion on Hugging Face")
|
|
|
8 |
import tempfile
|
9 |
import os
|
10 |
import time
|
11 |
+
import clip
|
12 |
+
import torchvision.transforms as transforms
|
13 |
|
14 |
# Use CUDA if available
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
23 |
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
|
24 |
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
25 |
|
26 |
+
# Load a lightweight image generation model
|
27 |
pipe = StableDiffusionPipeline.from_pretrained(
|
28 |
"OFA-Sys/small-stable-diffusion-v0",
|
29 |
torch_dtype=torch.float32,
|
30 |
+
use_auth_token=os.getenv("HF_TOKEN") # Set in Hugging Face Space secrets
|
31 |
).to(device)
|
32 |
+
pipe.safety_checker = None # Optional: disable for speed
|
33 |
+
|
34 |
+
# Load CLIP model for image-text similarity
|
35 |
+
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
|
36 |
|
37 |
# Translation Function
|
38 |
def translate_tamil_to_english(text, reference=None):
|
|
|
53 |
|
54 |
return translated, duration, rouge_l
|
55 |
|
56 |
+
# Creative Text Generator with Perplexity
|
57 |
def generate_creative_text(prompt, max_length=100):
|
58 |
start = time.time()
|
59 |
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
|
|
|
64 |
tokens = text.split()
|
65 |
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)
|
66 |
|
67 |
+
# Perplexity calculation
|
68 |
+
with torch.no_grad():
|
69 |
+
input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
|
70 |
+
outputs = gen_model(input_ids, labels=input_ids)
|
71 |
+
loss = outputs.loss
|
72 |
+
perplexity = torch.exp(loss).item()
|
73 |
+
|
74 |
+
return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 4)
|
75 |
|
76 |
+
# AI Image Generator with CLIP Similarity
|
77 |
def generate_image(prompt):
|
78 |
try:
|
79 |
start = time.time()
|
80 |
result = pipe(prompt)
|
81 |
image = result.images[0].resize((256, 256))
|
82 |
+
|
83 |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
84 |
image.save(tmp_file.name)
|
85 |
+
|
86 |
+
# CLIP similarity
|
87 |
+
image_input = clip_preprocess(image).unsqueeze(0).to(device)
|
88 |
+
text_input = clip.tokenize([prompt]).to(device)
|
89 |
+
|
90 |
+
with torch.no_grad():
|
91 |
+
image_features = clip_model.encode_image(image_input)
|
92 |
+
text_features = clip_model.encode_text(text_input)
|
93 |
+
similarity = torch.cosine_similarity(image_features, text_features).item()
|
94 |
+
|
95 |
+
return tmp_file.name, round(time.time() - start, 2), round(similarity, 4)
|
96 |
+
|
97 |
except Exception as e:
|
98 |
+
return None, f"Image generation failed: {str(e)}", None
|
99 |
|
100 |
# Streamlit UI
|
101 |
st.set_page_config(page_title="Tamil β English + AI Art", layout="centered")
|
102 |
st.title("π§ Tamil β English + π¨ Creative Text + AI Image")
|
103 |
|
104 |
tamil_input = st.text_area("βοΈ Enter Tamil text here", height=150)
|
105 |
+
reference_input = st.text_input("π Optional: Reference English translation for ROUGE-L")
|
106 |
|
107 |
if st.button("π Generate Output"):
|
108 |
if not tamil_input.strip():
|
|
|
119 |
st.info("βΉοΈ ROUGE-L not calculated. Reference not provided.")
|
120 |
|
121 |
with st.spinner("π¨ Generating image..."):
|
122 |
+
image_path, img_time, clip_score = generate_image(english_text)
|
123 |
|
124 |
if image_path:
|
125 |
st.success(f"πΌοΈ Image generated in {img_time} seconds")
|
126 |
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
|
127 |
+
st.markdown(f"π **CLIP Text-Image Similarity:** `{clip_score}`")
|
128 |
else:
|
129 |
st.error(image_path)
|
130 |
|
131 |
with st.spinner("π‘ Generating creative text..."):
|
132 |
+
creative, c_time, tokens, rep_rate, perplexity = generate_creative_text(english_text)
|
133 |
|
134 |
st.success(f"β¨ Creative text generated in {c_time} seconds")
|
135 |
+
st.markdown("**π§ Creative Output:**")
|
136 |
+
st.text(creative)
|
137 |
+
st.markdown(f"π Tokens: `{tokens}`")
|
138 |
+
st.markdown(f"π Repetition Rate: `{rep_rate}`")
|
139 |
+
st.markdown(f"π Perplexity: `{perplexity}`")
|
140 |
|
141 |
st.markdown("---")
|
142 |
st.caption("Built by Sureshkumar R using MBart, GPT-2 & Stable Diffusion on Hugging Face")
|