import gradio as gr from transformers import pipeline from diffusers import StableDiffusionPipeline import torch import os # 1. Check for HF_TOKEN HF_TOKEN = os.getenv("HF_TOKEN") if HF_TOKEN is None: raise ValueError("Please set the HF_TOKEN environment variable in Hugging Face repository secrets.") # 2. Set device device = "cuda" if torch.cuda.is_available() else "cpu" # 3. Load translator with token translator = pipeline( "translation", model="Helsinki-NLP/opus-mt-ta-en", use_auth_token=HF_TOKEN ) # 4. Load text generator (GPT-2) — public, no token needed generator = pipeline("text-generation", model="gpt2") # 5. Load image generator (Stable Diffusion) with token image_pipe = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", use_auth_token=HF_TOKEN, torch_dtype=torch.float16 if device == "cuda" else torch.float32 ) image_pipe = image_pipe.to(device) # 6. Main function def generate_image_from_tamil(tamil_input): # Translate Tamil to English translated = translator(tamil_input, max_length=100)[0]['translation_text'] # Generate a prompt using GPT-2 generated = generator(translated, max_length=50, num_return_sequences=1)[0]['generated_text'] generated = generated.strip() # Generate image using Stable Diffusion image = image_pipe(generated).images[0] return translated, generated, image # 7. Gradio Interface iface = gr.Interface( fn=generate_image_from_tamil, inputs=gr.Textbox(lines=2, label="Enter Tamil Text"), outputs=[ gr.Textbox(label="Translated English Text"), gr.Textbox(label="Generated English Prompt"), gr.Image(label="Generated Image") ], title="Tamil to Image Generator", description="This app translates Tamil text to English, generates creative English prompts, and visualizes them using Stable Diffusion.", allow_flagging="never" ) # 8. Launch app iface.launch()